THE DIVERSITY AND ACTIVITY OF SUBTERRANEAN TERMITES IN THE RESIDENTIAL AREA OF BOGOR, WEST JAVA, INDONESIA

Authors

  • Arinana Arinana Department of Forest Product, Faculty of Forestry and Environment, IPB University https://orcid.org/0000-0002-0625-1316
  • Rian Permana Department of Forest Products, Faculty of Forestry and Environment, IPB University
  • Anindya Intan Rahmawati Department of Forest Products, Faculty of Forestry and Environment, IPB University
  • Riki Andika (1) Faculty of Forestry, Universitas Mulawarman, (2) Department of Forest Products, Faculty of Forestry and Environment, IPB University https://orcid.org/0000-0002-8382-5598

DOI:

https://doi.org/10.59465/ijfr.2022.12.2.255-272

Keywords:

Attack frequency, Damage intensity, Pinus merkusii, Soil Characteristics, Water pavor presure

Abstract

The housing demands in Bogor City have been on the rise, leading to environmental changes affecting pest organisms, especially subterranean termites. This research aimed to identify various species of subterranean termites in Bogor City, analyze soil and weather conditions, and evaluate termite attack frequency and severity. The study spanned 12 designated sub-districts. In each area, 25 bait wood (2 x 2 x 46 cm) crafted from pine wood and treated with water vapor pressure (105°C, 1 bar, 5 hours) were installed. Soil samples were gathered from each sampled village, while weather data was specifically documented in one sub-district. Findings uncovered three termite species inhabiting residential zones of Bogor City: Microtermes insperatus, Macrotermes gilvus, and Schedorhinotermes javanicus, with Microtermes insperatus emerging as the predominant species. The soil and weather conditions significantly favored termite existence in Bogor City. Termite attack prevalence stood at 38%, and the degree of wood damage ranged from 4 to 9.

Downloads

Download data is not yet available.

References

Ajayi, O. E. O., Oyeniyi, E. A., & Elijah, O. A. 2020 Synergism of three botanical termiticides as wood protectants against subterranean termites, Macrotermes subhyalinus (Rambur, 1842). JoBAZ, 81, 17 doi://10.1186/s41936-020-00149-z.

American Society for Testing and Materials, 2006. Standard Test Method of Evaluating Wood Preservatives by Field Test with Stakes. United States. ASTM D 1758-06.

Andika, R., Retmadhona, I. Y., & Arinana, A. 2025. Evaluation of feeding rate and survival of subterranean termites Coptotermes curvignathus on Sengon and Rubber wood baits in the laboratory for wood durability testing. Jurnal Tengkawang, 15(1), 102–114. doi://10.26418/jt.v15i1.94373.

Anyango, J. J., Bautze, D., Fiaboe, K. K. M. et al. 2020. The impact of conventional and organic farming on soil biodiversity conservation: a case study on termites in the long-term farming systems comparison trials in Kenya. BMC Ecology, 20, 13. doi://10.1186/s12898-020-00282-x.

Arif, A., Putri, G., & Muin, M., 2020. Hazard mapping of subterranean termite attacks in Makassar city, South Sulawesi, Indonesia. Insects, 11, 1–14. doi:10.3390/insects11010031.

Arinana, Aldina, R., Nandika, D., Rauf, A., Harahap, I. S., Sumertajaya, I. M., & Bahtiar, E. T., 2016a. Termite diversity in urban landscape, south Jakarta, Indonesia. Insects, 7, 20. doi://10.3390/insects7020020.

Arinana, A., Ardiansyah, F., Andika, R., Tarmadi, D., & Satimo. 2025. Identification of subterranean termites and their attack characteristics on settlements in Jakarta Province, Indonesia. Biodiversitas, 26(1), 22–35. doi://10.13057/biodiv/d260103.

Arinana, Haneda, N. F., Nandika, D., Lestari, S. D. W., Bahtiar, E. T., Harahap, I. S., Rauf, A., & Sumertajaya, I. M., 2016b. Termite biodiversity and intensity of residential houses deterioration in Taman Darmaga Permai I Ciampea Bogor, in: Subyakto, Bakar, E. S., Hermiati, E., Fatriasari, W., Yanto, D. H. Y., Ermawar, R. A., Fitria, Zulfitri, A., Zulfiana, D., Kurniawan, Y. D., Anita, S. H., Astari, L., Pramasari, D. A., Nurhamiyah, Y., & Oktaviani, M. (Eds.), Role Acceleration and Synergy of Wood Research Society to Support Sustainable Forest Industry Based on Science and Technology. Proceedings of the 7th International Symposium of Indonesian Wood Research Society (IWoRS), Bogor, ID. pp. 281–289.

Arinana, Hutapea, F. E., Nandika, D., & Haneda, N. F., 2020a. Field evaluation of subterranean termites palatability on treated pine wood in Alam Sinarsari Residence, West Java. IOP Conference Series: Materials Science and Engineering, 935, 012012. doi://10.1088/1757-899X/935/1/012012.

Arinana, Philippines, I., Bahtiar, E. T., Koesmaryono, Y., Nandika, D., Rauf, A., Harahap, I. S., & Sumertajaya, I. M., 2016c. Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae) capability to maintain the temperature inside its nests. Journal of Entomology, 13, 199–202.

Arinana, Rauf, A., Nandika, D., Harahap, I. S., Sumertajaya, & I. M., 2019. Risk prediction model for subterranean termite infestation class in Jakarta based on species, soil and climate. (in Bahasa Indonesia) in: Prosiding Seminar Nasional PEI Cabang Bandung, Jatinangor. pp. 170–178.

Arinana, Simamora, S., Hanindita, F., Metapara, J., & Nandika, D., 2020b. Palatability of subterranean termite Coptotermes curvignathus Holmgren treated pine wood (Pinus merkusii). Pakistan Journal of Biological Sciences, 23, 181–189.

Arinana, A., Rahman, M. M., Silaban, R. E. G., Himmi, S. K., & Nandika, D., 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology, 50(6), 458-474 doi://10.5658/wood.2022.50.6.458.

Badan Pusat Statistik, 2018. Population and Population Growth Rate by Subdistrict in Bogor City 2010, 2016, and 2017 (in Bahasa Indonesia). Technical Report. BPS (Badan Pusat Statistik).

Berlanga, M., Palau, M., & Guerrero, R. 2018. Gut microbiota dynamics and functionality in Reticulitermes grassei after a 7-day dietary shift and ciprofloxacin treatment. PLOS ONE, 13(12): 1-18. doi://10.1371/journal.pone.0209789.

Botch, P. S., & Houseman, R. M. 2018. Landscape Factors Associated with Subterranean Termite (Isoptera: Rhinotermitidae) Treatments and Colony Structure in Residential Subdivisions. Sociobiology, 65(1), 67–78. doi://10.13102/sociobiology.v65i1.1827.

Cookson, L., & Trajstman, J., 2002. Termite Survey and Hazard Mapping. CSIRO Forestry and Forest Products, Clayton South, VIC, Australia.

Enagbonma, B. J., Babalola, O. O. 2020 Unveiling Plant-Beneficial Function as Seen in Bacteria Genes from Termite Mound Soil. Journal Soil Sci Plant Nutr., 20, 421–430. doi://10.1007/s42729-019-00124-w.

Evans, T., Forschler, B., & Grace, J., 2012. Biology of invasive termites: A worldwide review. Annual Review of Entomology, 58. doi://10.1146/annurevento-120811-153554.

Fajar, A., Himmi, S. K., Latif, A., Tarmadi, D., Kartika, T., Guswenrivo, I., Yusuf, S., & Yoshimura, T., 2021. Termite assemblage and damage on tree trunks in fast-growing teak plantations of different age: A case study in West Java, Indonesia. Insects, 12, 295. doi://10.3390/insects12040295.

Gazal, V., Bailez, O., & Viana-Bailez, A. M. 2019. Termite (Isoptera) survey in urban area in Northern of Rio de Janeiro State, Brazil. Revista Colombiana De Entomología, 45(1), e7813. doi://10.25100/socolen.v45i1.7813.

Huang, S. Y., Chiu, C. I., Tsai, Y. Y., Li, W. J., Wu, C. C., & Li, H. F., 2022. Nationwide termite pest survey conducted in Taiwan as a citizen science project. Journal of Economic Entomology, 115, 1650–1658. doi://10.1093/jee/toac122.

Ilhami, W. T., Arifin, H. S., Pramudya, B., & Kosmaryandi, N., 2022. Mapping of scientific tourism objects and attractions in Bogor city. IOP Conference Series: Earth and Environmental Science, 1109, 012041. doi://10.1088/1755- 1315/1109/1/012041.

Indrayani, Y., Khasanah, R. U., & Anwari, S., 2021. Effect of termite activity on soil chemical properties using baiting systems at an arboretum area in Pontianak, West Kalimantan, Indonesia. Biodiversitas, 22, 2125-2130. doi://10.13057/biodiv/d220461.

Iqbal, N., Evans T. A., Saeed, S., & Khan H. A. A. 2016. Evaluation of fipronil baits against Microtermes mycophagus (Blattodea: Termitidae). The Canadian Entomologist. 148(3):343-352. doi://10.4039/tce.2015.56.

Jalaludin, N., Rahim, F., & Yaakop, S., 2018. Termite associated to oil palm stands in three types of soils in Ladang Endau Rompin, Pahang, Malaysia. Sains Malaysiana, 47, 1961–1967. doi://10.17576/jsm-2018-4709-03.

Jouquet, P., Chaudhary, E., & Kumar, A. R. V., 2018. Sustainable use of termite activity in agroecosystems with reference to earthworms: A review. Agronomy for Sustainable Development, 38, 3. doi://10.1007/s13593-017- 0483-1.

Kathbaruah, S., Bhattacharyya, B., Borkataki, S., Gogoi, B., Hatibarua, P., Gogoi, S., Bhairavi, K. S., & Dutta, P. 2024. Termite mound soil based potting media: a better approach towards sustainable agriculture. Frontiers in Microbiology, 15. doi://10.3389/fmicb.2024.1387434.

Krishna, K., Grimaldi, D., Krishna, V., & Engel, M., 2013. Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 1–200. doi://10.1206/377.1.

Liu, S., Lin, X., Behm, J. E., Yuan, H., Stiblik, P., Šobotník, J., Gan, J., Xia, S., & Yang, X. (2019). Comparative responses of termite functional and taxonomic diversity to land-use change. Ecological Entomology, 44(6), 762-770. doi://10.1111/een.12755.

Mairawita, H. H., Rahman, T., & Janra, M., 2022. Diversity of termite (insecta: Isoptera) at the forested area of Universitas Andalas, Padang, West Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 1059, 012085. doi://10.1088/1755-1315/1059/1/012085.

Mardiansyah, M. F., Hidayat, J. T., & Syahbandar, M. Y. 2023. Klasterisasi permukiman kumuh berdasarkan karakteristik dan faktor penyebab kumuh di Kecamatan Bogor Selatan Kota Bogor. Jurnal Reka Lingkungan, 1(1).

Mikaelyan, A., Strassert, J. F. H., Tokuda, G., & Brune, A. 2014. The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environmental Microbiology, 1–12. doi://10.1111/1462-2920.12425.

Mubin, N., Harahap, I. S., & Giyanto, 2017. Diversity and abundance of termite species (blattodea: Termitoidea) at IPB Dramaga Campus, in various habitat types (in Bahasa Indonesia), in: Prosiding Seminar Nasional PEI Cabang Bandung, Jatinangor. pp. 51–60.

Musbau, S. A., & Ayinde, B. H., 2021. Micro and macro (organisms) and their contributions to soil fertility. Frontiers in Environmental Microbiology, 7, 44–56. doi://10.11648/j.fem.20210702.11.

Nandika, D., Rismayadi, Y., & Diba, F., 2015. Termites: Biology and Control 2nd Edition (in Bahasa Indonesia). Universitas Muhammadiyah Surakarta Press, Surakarta, ID.

Novita, N., Amiruddin, H., Ibrahim, H., Jamil, T. M., Syaukani, S., Oguri, E., & Eguchi, K., 2020. Investigation of termite attack on cultural heritage buildings: A case study in Aceh Province, Indonesia. Insects, 11, 385. doi://10.3390/insects11060385.

Nurhadi, M.W., Arinana, A., Rahmawati, A. I., Herliyana, E. N., Andika, R., & Himmi, S. K., 2023. Wood decomposers on six community timber species in two different locations. Biodiversitas, 24, 6629–6640. doi://10.13057/biodiv/d241225.

Pontarp, M., Bunnefeld, L., Cabral, J. S., Etienne, R. S., Fritz, S. A., Gillespie, R., Graham, C. H., Hagen, O., Hartig, F., Huang, S., Jansson, R., Maliet, O., Mu¨nkemu¨ller, T., Pellissier, L., Rangel, T. F., Storch, D., Wiegand, T., & Hurlbert, A. H., 2019. The latitudinal diversity gradient: Novel understanding through mechanistic ecoevolutionary models. Trends in Ecology Evolution, 34, 211–223. doi://10.1016/j.tree.2018.11.009.

Pratiknyo, H., Haryanto, T., & Apriyanto, D. N., 2020. Diversity, density, and distribution of termites in housing complexes in Purwokerto, Central Java, Indonesia. Biodiversitas, 21. doi://10.13057/biodiv/d211233.

Subekti, N., Priyono, B., & Aisyah, A. N., 2018. Biodiversity of termites and damage to buildings in Semarang, Indonesia. Biosaintifika, 10, 176–182.

Subekti, N., & Raydityamilanio, R., 2023. Termite diversity and abundance based on altitude in Mount Ungaran, Central Java, Indonesia. Biodiversitas, 24, 3319–3324. doi://10.13057/biodiv/d240626.

Subekti, N., Widiyaningrum, P., Nurvaizah, I., & Mar’ah, R., 2019. Effective control of subterranean termite Coptotermes curvignathus using n-hexane and ethyl acetate from gaharu (Aquilaria malaccensis). Systematic Reviews in Pharmacy, 10, 31–33. doi://10.5530/srp.2019.2.06.

Taghizadeh-Mehrjardi, R., Emadi, M., Cherati, A., Heung, B., Mosavi, A ., & Scholten, T., 2021. Bio-inspired hybridization of artificial neural networks: An application for mapping the spatial distribution of soil texture fractions. Remote Sensing, 13, 1025. doi://10.3390/rs13051025.

Tarigan, N., & Dasanto, B. D., 2022. Bogor water adequacy status for 2009–2019. Agromet, 36, 42–50. doi://10.29244/j.agromet.36.1.42-50.

Tilahun, A., Cornelis, W., Sleutel, S., Nigussie, A., Dume, B., & Van Ranst, E., 2021. The potential of termite mound spreading for soil fertility management under low input subsistence agriculture. Agriculture, 11, 1002. doi://10.3390/agriculture11101002.

Wang, C., Henderson, G. & Gautam, B. K. 2015. Behavioral Response of Formosan Subterranean Termites (Isoptera: Rhinotermitidae) to Soil with High Clay Content. Journal Insect Behav., 28, 303–311. doi://10.1007/s10905-015-9505-5.

Wardhani, E., & Rufina, A. 2024. Evaluasi saluran drainase di Kecamatan Bogor Selatan. Jurnal Reka Lingkungan, 10(2), 113-124.

Woon, J. S., Boyle, M. J. W., Ewers, R. M., Chung, A., & Eggleton, P., 2019. Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes Sociaux, 66, 57–64. doi://10.1007/s00040-018-0664-1.

Downloads

Published

31-10-2025

How to Cite

Arinana, A., Permana, R., Rahmawati, A. I., & Andika, R. (2025). THE DIVERSITY AND ACTIVITY OF SUBTERRANEAN TERMITES IN THE RESIDENTIAL AREA OF BOGOR, WEST JAVA, INDONESIA. Indonesian Journal of Forestry Research, 12(2), 255–272. https://doi.org/10.59465/ijfr.2022.12.2.255-272

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.