MORPHOLOGICAL RESPONSE OF Parkia speciosa SEEDLINGS EXPOSED TO VARIOUS AMELIORANTS, SHALLOW GROUNDWATER, AND THE EFFECTS ON MICROCLIMATE CONDITIONS

Authors

  • Purwanto Universitas Sriwijaya
  • Benyamin Lakitan Universitas Sriwijaya
  • Marieska Verawaty Universitas Sriwijaya

DOI:

https://doi.org/10.59465/ijfr.2025.12.1.53-66

Keywords:

Growing media, Microclimatic conditions, Optimal growth, Shallow water table, Stinky bean

Abstract

The cultivation of stinky bean (Parkia speciosa Hassk.) in wetlands is significantly affected by shallow water table conditions. Therefore, this research aimed to explore the growth of stinky bean seedlings and microclimate conditions in various substrate mixtures and shallow water table levels. The experiment was conducted at the Jakabaring Research Facility (104°46'44''E, 3°01'35''S), Palembang, South Sumatra, from September to December 2023 using a factorial randomized block design. The first and second factors were an ameliorant mixture in the substrate and shallow water table depth respectively, with each treatment repeated four times. The results showed that optimal leaf growth occurred using biochar ameliorant, but no significant difference was observed among the four types of planting media. Although the conditions of air and substrate temperature and soil moisture varied, the stinky bean seedlings still grew optimally on all four planting media, including biochar, peat, cocopeat, and topsoil under shallow water table conditions. A zero-intercept linear model was considered optimal for predicting leaf area based on midrib length, leaf width, and the interaction indicated by the R² value. Optimal stinky bean leaf growth was observed at shallow water table SWT-12, but plant growth at three variations of SWT-20, SWT-16, and SWT-12 was not significantly different. Fluctuations in the microclimate, including air and substrate temperature, as well as humidity did not significantly affect growth, suggesting that the cultivation of stinky bean plants could be carried out in all shallow water table conditions.

Downloads

Download data is not yet available.

References

Baatuuwie, B. N., Nasare, L. I., & Tefuttor, E. G. (2020). Biochar as an alternative growth medium for tree seedlings in the Guinea Savanna Zone of Ghana. African Journal of Plant Science, 14(7), 248-253. doi: 10.5897/AJPS2019.1796

Chong, K. Y., Hung, S. M. X., Koh, C. Y., Lim, R. C. J., Loh, J. W., Neo, L., Seah, W. W., Tan, S. Y., & Tan, H. T. W. (2021). Waterlogging and soil but not seedling competition structure tree communities in a catchment containing a tropical freshwater swamp forest. Journal of Vegetation Science, 32(5), e13072. doi: 10.1111/jvs.13072

Chrysargyris, A., Prasad, M., Kavanagh, A., & Tzortzakis, N. (2020). Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance. Agronomy, 10(9), e1421. doi: 10.3390/agronomy10091421

Doggart, N., Morgan-Brown, T., Lyimo, E., Mbilinyi, B., Meshack, C. K., Sallu, S. M., & Spracklen, D. V. (2020). Agriculture is the main driver of deforestation in Tanzania. Environmental Research Letters, 15(3), e034028. doi: 10.1088/1748-9326/ab6b35

Farhoune, H., & Cherkaoui, S. (2022). The Nitrogen Effects on Growth and Development of Morphological Parameters of “Argania Spinosa L. skeel” Tree Seedlings. International Conference on Advanced Intelligent Systems for Sustainable Development , 198-214. doi: 10.1007/978-3-031-35248-5_18

Felle, I. K., Antoh, A. A., Raunsay, E. K., Akobiarek, M. N., Aisoi, L. E., & Jesajas, D. R. (2023). The Influence of Cocopeat Plant Media and Manure on the Growth of Ketapang (Terminalia cattapa L.) in Telaga Cemara Beach Forest, Holmafen Village, Muara Tor District, Sarmi Regency. Jurnal Penelitian Pendidikan IPA, 9(8), 6487-6492. doi: 10.29303/jppipa.v9i8.4596

Ferlito, F., Torrisi, B., Allegra, M., Stagno, F., Caruso, P., & Fascella, G. (2020). Evaluation of conifer wood biochar as growing media component for citrus nursery. Applied Sciences, 10(5), e1618. doi: 10.3390/app10051618

Fornes, F., & Belda, R. M. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests, 50(6), 1063-1086. doi: 10.1007/s11056-019-09715-y

Fujita, S., Noguchi, K., & Tange, T. (2020). Root responses of five Japanese afforestation species to waterlogging. Forests, 11(5), e552. doi: 10.3390/f11050552

Fujita, S., Noguchi, K., & Tange, T. (2021). Different waterlogging depths affect spatial distribution of fine root growth for Pinus thunbergii seedlings. Frontiers in Plant Science, 12, e614764. doi: 10.3389/fpls.2021.614764

Harahap, E. P., & Rahmawati, N. (2023). Study of the composition of planting media and za fertilizer on the growth and production of samosir shallots using pvc pipes. International Journal of Islamic Education, Research and Multiculturalism, 5(3), 911-932. doi; 10.47006/ijierm.v5i3.283

Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A. V., Myers-Smith, I., Abbot, B. W., Aberman, Jakob., Blanc-Betes, E., & Blok, D. (2020). Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental research letters, 16(1), e015001. doi: 10.1088/1748-9326/abc994

Lakitan, B., Susilawati, S., Wijaya, A., Ria, R. P., & Putri, H. H. (2022). Non-destructive leaf area estimation in habanero chili (Capsicum chinense Jacq.). International Journal of Agricultural Technology, 18(2), 633-650.

Lawrence, D., Coe, M., Walker, W., Verchot, L., & Vandecar, K. (2022). The unseen effects of deforestation: biophysical effects on climate. Frontiers in Forests and Global Change, 5, 49. doi: 10.3389/ffgc.2022.756115

Ma, L., Rao, X., & Chen, X. (2019). Waterlogging tolerance of 57 plant species grown hydroponically. HortScience, 54(4), 749-753. doi: 10.21273/HORTSCI13875-19

Matthew, N. K., Shuib, A., Ramachandran, S., & Afandi, S. H. M. (2019). Total economic value of ecosystem services in Malaysia: A review. Journal of Sustainability Science and Management, 14(5), 148-163.

Medyńska-Juraszek, A., & Ćwieląg-Piasecka, I. (2021). Biochar as a growing media component. In Biochar as a Renewable-Based Material: With Applications in Agriculture, the Environment and Energy, 85-104. doi: 10.1142/9781786348975_0004

Meihana, M., & Lakitan, B. (2022). The impact of groundwater level stress on the morphological, anatomical and physiological of beans (Phaseolus vulgaris L.) in the generative phase. Jurnal Agroqua: Media Informasi Agronomi dan Budidaya Perairan, 20(2), 280-291. doi: 10.32663/ja v20i2.3248

Muda, S. A., Lakitan, B., Nurshanti, D. F., Gustiar, F., Ria, R. P., Rizar, F. F., & Fadhilah, L. N. (2023). Morphological Model and Visual Characteristic of Leaf, and Fruit of Citrus (Citrus sinensis). Agrium: Jurnal Ilmu Pertanian, 26(2). 92-102. doi: 10.30596/agrium.v26i2.13743

Nabloussi, A., Bahri, H., Lakbir, M., Moukane, H., Kajji, A., & El Fechtali, M. (2019). Assessment of a set of rapeseed (Brassica napus L.) varieties under waterlogging stress at different plant growth stages. Oliseeds and fats Crops and Lipits, 26, 36. doi: 10.1051/ocl/2019033

Parra, M., Abrisqueta, I., Hortelano, D., Alarcón, J. J., Intrigliolo, D. S., & Rubio-Asensio, J. S. (2022). Open field soilless system using cocopeat substrate bags improves tree performance in a young Mediterranean persimmon orchard. Scientia Horticulturae, 291, e110614. doi: 10.1016/j.scienta.2021.110614

Shaheen, H. M. F., Ahmad, I., Khan, S. H., & Munir, H. (2021). Screening of five multipurpose tree species for waterlogging tolerance using morphological and physiological response as effective indicators. Pakistan Journal of Agricultural Sciences, 58(2), 547-553. doi: 10.21162/PAKJAS/21.1299

Singha, W. R., Kurmi, B., Sahoo, U. K., Sileshi, G. W., Nath, A. J., & Das, A. K. (2021). Parkia roxburghii, an underutilized tree bean for food, nutritional and regional climate security. Trees, Forests and People, 4, e100065. doi: 10.1016/j.tfp.2021.100065

Singhania, N., Chhikara, N., Bishnoi, S., Garg, M. K., & Panghal, A. (2020). Bioactive Compounds of Stinky bean Beans (Parkia speciosa Hassk.). Bioactive Compounds in Underutilized Vegetables and Legumes, 1-19. doi: 10.1007/978-3-030-44578-2_30-2

Susilawati, Irmawati, Ammar, M., Harun, M. U., Syukur, M., Bastoni, & Novitasari. (2022). Growth and Yield of Several Red Chilli (Capsicum Annuum L.) Peat-Strains on Peat Soil. IOP Conference Series: Earth and Environmental Science 995, e012049. doi: 10.1088/1755-1315/995/1/012049

Tata, H. L., Nuroniah, H. S., Ahsania, D. A., Anggunira, H., Hidayati, S. N., Pratama, M., Istomo, I., Chimner, R. A., Noordwijk, M. V., & Kolka, R. (2022). Flooding tolerance of four tropical peatland tree species in a nursery trial. Plos one, 17(4), e0262375. Doi: 10.1371/journal.pone.0262375

Walianggen, A. (2022). Biochar rice husk charcoal on growth and production of long bean plants (Vigna sinensis l.): Formulation analysis. Agaricus: Advances Agriculture Science and Farming, 2(1), 1-6. doi: 10.32764/agaricus.v2i1.2768

Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., Zhao, X., Zhao, X., Jiang, L., Sanders, N. J., Classen, S.A., & He, J. S. (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 23(4), 701-710. Doi: 10.1111/ele.13474

Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Cao, Y., Deng, Y., Li, C., Wu, L., Wang, J., Chen, F., Xi, H., Ran, C., & Liu, M. (2022). Limitations of soil moisture and formation rate on vegetation growth in karst areas. Science of the Total Environment, 810, e151209. doi: 10.1016/j.scitotenv.2021.151209

Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., & Shu, K. (2020). Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 148, 228-236. doi: 10.1016/j.plaphy.2020.01.020

Downloads

Published

17-04-2025

How to Cite

Purwanto, Lakitan, B., & Verawaty , M. (2025). MORPHOLOGICAL RESPONSE OF Parkia speciosa SEEDLINGS EXPOSED TO VARIOUS AMELIORANTS, SHALLOW GROUNDWATER, AND THE EFFECTS ON MICROCLIMATE CONDITIONS. Indonesian Journal of Forestry Research, 12(1), 53–66. https://doi.org/10.59465/ijfr.2025.12.1.53-66

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.