THE SURFACE CHARACTERISTICS AND PHYSICAL PROPERTIES OF SENGON WOOD AT HIGH-TEMPERATURE HEATING TREATMENTS
DOI:
https://doi.org/10.59465/ijfr.2025.12.1.135-149Keywords:
Characteristic of surface, heat treatments, sengon, physical propertiesAbstract
Sengon (Falcataria moluccana Miq.) is a fast-growing timber species widely distributed in Indonesia. However, its dimensional instability and low surface quality have limited its widespread use. Wood modification is essential for enhancing these properties, and one effective approach is heat treatment. This study investigated the effects of different heat treatment methods and durations on color change, surface roughness, weight loss (WL), decreased density, and dimensional stability of sengon wood. The heat modification process was conducted using two methods: oven-heating and hot press-heating, with temperatures set at 200°C for durations ranging from 1 to 5 hours. The results indicated that oven-heated samples exhibited higher surface roughness, weight loss, density reduction, and dimensional stability while showing less color change than hot press-heated samples. Additionally, the hot press-heated samples displayed more significant color changes (darkening) and smoother surface roughness. WL and decreased density were also more pronounced with longer heating durations, except for the 4- and 5-hour hot press-heating treatments. Notably, oven-heated samples demonstrated higher dimensional stability than hot press-heated samples as the duration of heating increased. Based on the results, the optimal treatment varies depending on the desired product characteristics. For improved surface qualities with consideration of WL, the optimum treatment is a 2-hour hot press-heating treatment. Higher dimensional stability can be achieved through a 3-hour oven-heating treatment.
Downloads
References
Alamsyah, E.M., Nan, L.C., Yamada, M., Taki, K., & Yoshida, H. (2007). Bondability of tropical fast-growing tree species I: Indonesian wood species. Journal of Wood Science, 53(1), 40‒46. https://doi.org/10.1007/s10086-006-0821-4
Augustina, S., Darmawan, T., Sudarmanto, Narto, N., Bahanawan, A., Adi, D.S., Triwibowo, D., Amin, Y., Sofianto, I.A., Sejati, P.S., Dwianto, W., Witjaksono, Widyorini, R., Gérardin, P., & Marbun, S.D. (2023). Effects of succinic acid impregnation on physical properties of sapwood and heartwood from plantation-grown short-rotation teak. Southern Forests: a Journal of Forest Science, 85(3), 1‒10. https://doi.org/10.2989/20702620.2023.2220893
Aydin, I., & Colakoglu, G. (2005). Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood. Applied Surface Science, 252, 430‒440. https://doi.org/10.1016/j.apsusc.2005.01.022
Ayrilmis, N., Kariz, M., Kwon, J.H., & Kitek, K.M. (2019). Surface roughness and wettability of surface densified heat-treated Norway spruce (Picea abies L. Karst.). Drvna industrija, 70(4), 377‒382. https://doi.org/10.5552/drvind.2019.1852
Bakar, B. F. A, Hiziroglu, S., & Tahir, P. M. (2013). Properties of some thermally modified wood species. Materials and Design, 43, 348‒355. https://doi.org/10.1016/j.matdes.2012.06.054
Bartlett, A.I., Hadden, R.M., & Bisby, L.A. (2019). A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technology, 55(5), 1‒49. https://doi.org/10.1007/s10694-018-0787-y
Basyal, E., Kart, S., Toker, H., & Degirmentepe, S. (2014). Some physical characteristics of thermally modified oriental-beech wood. Maderas, 16(3), 291‒298. https://doi.org/10.4067/S0718-221X2014005000022
Bekhta, P., & Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57, 539‒546. https://doi.org/10.1515/HF.2003.080
Bessala, L.F.B., Gao, J., He, Z., Wang, Z., & Yi, S. (2023). Effects of heat treatment on color, dimensional stability hygroscopicity and chemical structure of afrormosia and newtonia wood: a comparative study of air and palm oil medium. Polymers, 774(15), 1‒16. https://doi.org/10.3390/polym15030774
Bourgois, P.J., Janin, G., & Guyonnet, R. (1991). La mesure de couleur: Une méthode d’étude et d’optimisation des transformations chimiques du bois thermolysé. Holzforschung, 45(5), 377‒382. https://doi.org/10.1515/hfsg.1991.45.5.377
Candelier, K., Thevenon, T. F., Petrissans, A., Dumarcay, S., Gerardin, P., & Petrissans, M. (2016). Control of wood thermal treatment and its effects on decay resistance: a review. Annals of Forest Science, 73, 571‒583. https://doi.org/10.1007/s13595-016-0541-x
Cengel, Y. A. (2002). Heat Transfer: A Practical Approach. 2nd ed. New York, NY: McGraw Hill.
Chu, D., Xue, L., Zhang, Y., Kang, L., & Mu, J. (2016). Surface characteristics of poplar wood with high-temperature heat treatment: wettability and surface brittleness. Bioresources, 11(3), 6948‒6967. https://doi.org/10.15376/biores.11.3.6948-6967
Ciritcioğlu, H. H., Ilce, A. C., & Burdurlu, E. (2017). The color preferences of consumers on furniture surfaces. The Online Journal of Science and Technology, 7(3), 98‒108. https://www.tojsat.net/journals/tojsat/articles/v07i03/v07i03-15.pdf
Denes, L., & Lang, E. M. (2013). Photodegradation of heat treated hardwood veneers. J Phot Biol, 118(2013), 9‒15. https://doi.org/10.1016/j.jphotobiol.2012.09.017
Ding, T., Cheng, Y., & Jiang, T. (2022). Preparation and characterization of heat-treated douglas fir wood with core–shell structure. Forests, 13(6), 825‒838. https://doi.org/10.3390/f13060825
Dundar, T., As, N., Korkut, S., & Unsal, O. (2008). The effect of boiling time on the surface roughness of rotary-cut veneers from oriental beech (Fagus orientalis L.). Journal of Materials Processing Technology. 199, 119‒123. https://doi.org/10.1016/j.jmatprotec.2007.07.036
Esteves, B. M., Domingos, I. J., & Pereira, H. M. (2008). Pine modification by heat treatment in air. Bioresources, 3(1), 142‒154. https://doi.org/10.15376/biores.3.1.142-154
Esteves, B.M, & Pereira HM. (2009). Wood modification by heat treatment: a review. Bioresources, 4(1), 370‒404. https://doi.org/10.15376/biores.4.1.370-404
Hidayat, W., Qi, Y., Jang, J. H., Park, B. H., Banuwa, I. S., Febrianto, F., & Kim, N. H. (2017). Color change and consumer preferences towards color of heat-treated korean white pine and royal paulownia woods. J. Korean Wood Sci. Technol., 45(2), 213‒222. https://doi.org/10.5658/WOOD.2017.45.2.213
Hill, C.A.S. (2006). Wood Modification: Chemical, Themal and Other Process. Chichester, UK: John Wiley & Sons Ltd.
Hill, C., Altgen, M., & Rautkari, L. (2021). Thermal modification of wood—a review: chemical changes and hygroscopicity. Journal of Material Science, 56(11), 6581‒6614. https://doi.org/10.1007/s10853-020-05722-z
International Organization for Standardization. (2021). Geometrical product specifications (GPS) ‒Surface texture: Profile. Terms, definitions and surface texture parameters (ISO Standard No. 21920-2:2021). https://www.iso.org/standard/72226.html
Kacˇikova, D., Kacˇik, F., Cˇabalova, I., & Dˇurkovic, J. (2013). Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource Technology, 144(2013), 669‒674. https://doi.org/10.1016/j.biortech.2013.06.110
Kamperidou, V., Barboutis, I., & Vasileiou, V. (2014). Influence of thermal treatment on mechanical strength of scots pine (Pinus sylvestris L.) wood. Wood Research, 59(2), 373‒378. http://www.centrumdp.sk/wr/02/16.pdf
Karagoz, U., Akyildiz, M. H., & Isleyen, O. (2011). Effect of heat treatment on surface roughness of thermal wood machined by CNC. Pro Ligno, 7(4), 50‒58. https://www.proligno.ro/en/articles/2011/4/karagoz_full.pdf
Korkut, S., Alma, M. H., & Elyildirim, Y. K. (2009). The effects of heat treatment on physical and technological properties and surface roughness of European Hophornbeam (Ostrya carpinifolia Scop.) wood. African Journal of Biotechnology, 8(20), 5316‒5327. https://doi.org/10.5897/AJB09.561
Korkut, S., & Kocaefe, D. (2009). Effect of heat treatment on wood properties. Duzce University Journal of Forestry, 5(2), 11–34. https://www.researchgate.net/publication/284701826_Effect_of_heat_treatment_on_wood_properties
Korkut, S., & Budakci, M. (2010). The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood. Wood Research, 55(1), 67‒78. http://www.woodresearch.sk/wr/201001/08.pdf
Krystofiak, T., Can, A., & Lis, B. (2022). Investigation of roughness and adhesion strength properties of pine and poplar wood heat treated in air and under vacuum after artificial aging. Coating, 1910(12), 1‒10. https://doi.org/10.3390/coatings12121910
Kučerová, V., Lagaňa, R., Výbohová, E., & Hýrošová, T. (2016). The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. Bioresources, 11(4), 9079‒9094. https://doi.org/10.15376/biores.11.4.9079-9094
Martawijaya, A., Kartasujana, I., Mandang, Y.I, Prawira, S.A., & Kadir, K. (1989). Atlas of Indonesian Timbered (2nd ed.) (In Bahasa Indoensia). Bogor, ID: Indonesian Forestry Research and Development Agency.
Martha, R., Basri, E., Setiono, L., Batubara, I., Rahayu, I. S., Gerardin, P., & Darmawan, W. (2021). The effect of heat treatment on the characteristics of the short rotation teak. International Wood Products Journal, 218‒227. https://doi.org/10.1080/20426445.2021.1953723
Mascarenhas, F.J.R., Dias, A.M.P.G., & Christoforo, A.L. (2021). State of the art of microwave treatment of wood: literature review. Forests, 12(6), 745‒776. https://doi.org/10.3390/f12060745
Nabil, E., Mahmoud, N., Youssef, A., Saber, E., & Kamel, S. (2018). Evaluation of physical, mechanical and chemical properties of cedar and sycamore woods after heat treatment. Egypt J. Chem, 61(6), 1131‒114. https://doi.org/10.21608/EJCHEM.2018.4301.1383
Nemoto, A. (2002). Farm tree planting and the wood industry in Indonesia: a study of falcataria plantations and the falcataria product market in Java. In Policy Trend Report 2001/2002 (pp. 42–51). Hayama, JP: Institute for Global Environmental Strategies.
aNguyen, T. H. V., Nguyen, T. T., Ji, X., & Guo, M. (2018). Predicting color change in wood during heat treatment using an artificial neural network model. BioResources, 13(3), 6250‒6264. https://doi.org/10.15376/biores.13.3.6250-6264
bNguyen, N., Ozarska, B., Fergusson, M., & Vinden, P. (2018). Dyeing of Eucalyptus globulus veneers with reactive dye using sequential vacuum and varied pressures. BioResources, 13(4), 8690‒8708. https://doi.org/10.15376/biores.13.4.8690-8708
Nuopponen, M., Vuorinen, T., Jamsa, S., & Viitaniemi, P. (2003). Thermal modification in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol. 24(1), 13–26. https://doi.org/10.1007/s00226-003-0178-4
Nuraini, R., Harlena, S., Amalya, F., & Ariestiandy. (2023). Classification of fast growing species using radial basis function algorithm based on leaf image (in Bahasa Indonesia). Building of Informatics, Technology and Science, 4(4), 2005‒2014. https://doi.org/10.47065/bits.v4i4.3245
Olarescu, M. C., Campean, M., Ispas, M., & Cosereanu, C. (2014). Effect of thermal treatment on some properties of lime wood. Eur. J. Wood Prod, 72, 559‒562. https://doi.org/10.1007/s00107-014-0809-5
Pelit, H., Budakçı, M., & Sönmez, A. (2018). Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods. Eur. J. Wood Prod., 76, 79‒87. https://doi.org/10.1007/s00107-017-1182-y
Percin, O. (2016). The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis lipsky) wood. Wood Research. 6(1), 443‒456. http://www.woodresearch.sk/cms/wp-content/uploads/2021/09/The-effect-of-heat-treatment-on-the-some-physical-and-mechanical-properties-of-beech.pdf
Piernik, M., Wo´zniak, M., Pinkowski, G., Szentner, K., Ratajczak, I., & Krauss, A. (2022). Impact of the heat treatment duration on color and selected mechanical and chemical properties of scots pine wood. Materials, 15(15), 1‒13. https://doi.org/10.3390/ma15155425
Qiaofang, Z., Chuanfy, C., Xiangyu, Z., Dengyun, T., & Kaifu, L. (2019). The effect of thermal modification by hot pressing on the some physical and mechanical properties in rubberwood (Hevea brasiliensis). Wood Research, 64(2), 361‒372. http://www.woodresearch.sk/wr/201902/17.pdf
Rahayu, I., Dina, F.C., Maddu, A., Darmawan, W., Nandika, D., & Prihatini, E. (2021). Dimensional stability of treated sengon wood by nano-silica of betung bamboo leaves. Forests, 12(11), 1581‒1590. https://doi.org/10.3390/f12111581
Rajković, V.J., & Miklečić, J. (2019). Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Advances in Materials Science and Engineering, 1‒9, Article 8621486. https://doi.org/10.1155/2019/8621486
Ratnasingam, J., & Ioras, F. (2012). Effect of heat treatment on the machining and other properties of rubberwood. Eur. J. Wood Prod. 70, 759‒761. https://doi.org/10.1007/s00107-011-0587-2
Rowell, R.M., & Ellis, W.D. (1978). Determination of dimensional stabilization of wood using the watersoak method. Wood and Fiber, 10(2), 104‒111. https://wfs.swst.org/index.php/wfs/article/view/1004
Sahin, H. I., & Guler, C. (2018). Effect of heat treatment on the dimensional stability of ash (Fraxinus angustifolia Vahl.) wood. Forestist, 68(1), 45‒52. https://doi.org/10.5152/forestist.2018.005
Salca, E.A., & Hiziroglu, S. (2014). Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design, 62, 416‒423. https://doi.org/10.1016/j.matdes.2014.05.029
Sanberg, D., Haller, P., & Navi, P. (2012). Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Materials Science and Engineering, 8(1), 64‒88. https://doi.org/10.1080/17480272.2012.751935
Sargent, R. (2019). Evaluating dimensional stability in solid wood: A review of current practice. J. Wood Sci. 65(36), 1‒11. https://doi.org/10.1186/s10086-019-1817-1
Sivrikaya, H., Can, A., Troya, T., & Conde, M. (2015). Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas: Ciencia Y Tecnologia, 17(3), 559‒570. https://doi.org/ 10.4067/S0718-221X2015005000050
Sogutlu, C. (2005). The effect of some factors on surface roughness of sanded wood material. Journal of Polytechnic, 8(4), 345‒350. https://doi.org/10.2339/y2005.v8.n4.p345-350
Williams, R.S. (2005). Handbook of Wood Chemistry and Wood Composites: Weathering of Wood. Florida, US: CRC Press.
Weiland, J.J., & Guyonnet, R. (2003). Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh-und Werkstoff, 61(3), 216220. https://doi.org/10.1007/s00107-003-0364-y
Yildiz, S., Gezer, E.D., & Yildiz, U.C. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12), 1762‒1766. https://doi.org/10.1016/j.buildenv.2005.07.017
Zhang, J., Qu, L., Wang, Z., Zhao, Z., He, Z., & Yi, S. (2017). Simulation and validation of heat transfer during wood heat treatment process. Results in Physics. 7, 3806‒3812. https://doi.org/10.1016/J.RINP.2017.09.046
Zhu, Z., Tu, D., Chen, Z., Chen, C., & Zhou Q. (2021). Effect of hot pressing modification on surface properties of rubberwood (Hevea brasiliensis). Wood Research. 66(1), 129‒140. https://doi.org/10.37763/wr.1336-4561/66.1.129140

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indonesian Journal of Forestry Research

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in Indonesian Journal of Forestry Research (IJFR) are licensed under the terms of the Creative Commons Attribution International License (CC BY-NC-SA 4.0) with CC BY-NC-SA 4.0 being the latest version.