GROWTH AND WOOD TRAITS EVALUATION OF 15-YEAR-OLD TENGKAWANG (Shorea spp.) TREE STANDS IN GUNUNG WALAT UNIVERSITY FOREST, WEST JAVA, INDONESIA
DOI:
https://doi.org/10.59465/ijfr.2024.11.2.243-258Keywords:
dipterocarps, ex-situ conservation, education forest, Non-timber Forest Products (NTFPs), Shorea spp.Abstract
Gunung Walat University Forest (GWUF) in Sukabumi Regency, Indonesia, plays a crucial role in providing various ecosystem services. Five important Shorea trees, i.e., S. stenoptera, S. mecisopteryx, S. pinanga, S. palembanica, and Shorea leprosula have been planted in GWUF as an effort for its conservation and object of research. An evaluation of the adaptability and suitability of these species to the GWUF ecosystem, as well as their wood characteristics, needs to be carried out regularly. Therefore, the study aimed to examine the growth performances and physical wood properties of five Shorea species, i.e., Shorea stenoptera, S. mecisopteryx, S. pinanga, S. palembanica, and S. leprosula at the age of 15-year-old planted in GWUF. The results indicated that S. leprosula exhibited the best growth performance in terms of average diameter (19.64 cm), volume (0.27 m3), slenderness (126.58), and wood density (0.94 g/cm3), and S. stenoptera showed the best performance in average height (23.35 m). While the poor performance was shown by S. palembanica in terms of average diameter (6.73 cm), height (11.15 m), volume (0.02 m3), wood density (0.87 g/cm3), and specific gravity (0.45), and S. stenoptera in terms of average slenderness (202.73). In addition, significant differences in tree height, diameter, volume, wood density, specific gravity, and moisture content were found in S. palembanica compared with other species. The relationship between the growth and physical wood properties parameters varied between species. The study revealed that planting the five Shorea species in GWUF is suitable for increasing vegetation cover and conserving the species.
Downloads
References
Abd-Aziz, S., Gozan, M., Ibrahim, M. F., Phang, L. Y. (2023). Chemical substitutes from agricultural and industrial by-products: bioconversion, bioprocessing, and biorefining. Weinheim: Wiley-VCH.
Aguirre, O., Hui, G., Gadow, K. V., & Jiménez, J. (2003). An analysis of spatial forest structure using neighborhood-based variables. Forest Ecology and Management, 183(1-3), 137–145. doi:10.1016/S0378-1127(03)00102-6.
Anna, N., Supriyanto, Karlinasari, L., Sudrajat, D. J., & Siregar, I. Z. (2020). The growth, pilodyn penetration, and wood properties of 12 Neolamarckia cadamba provenances at 42 months old. Biodiversitas, 21(3), 1091–1100. doi:10.13057/biodiv/d210332.
Ashton, P. (1998). Shorea palembanica. The IUCN Red List of Threatened Species 1998 e.T33621A9798146. doi:10.2305/IUCN.UK.1998.RLTS.T33621A9798146.en. Downloaded on 01 September 2021.
Barajas-Morales, J. (1987). Wood specific gravity in species from two tropical forests in Mexico. IAWA Bulletin n.s., 8(2), 143–148.
Blicher-Mathiesen, U. (1994). Borneo Illipe, a fat product from different Shorea spp. (Dipterocarpaceae). Economic Botany, 48(3), 231–242.
Bunyamin, A., Purnomo, D., Taofik, S, Chuddin, M., & Sawitri, I. (2020). Innovation on food product development for local commodity with design thinking approach (Case study: tengkawang fruit (Shorea stenoptera Burck.) commodity in Bengkayang, West Kalimantan). IOP Conference Series: Earth and Environmental Science, 443(012072), 1–9. doi: 10.1088/1755-1315/443/1/012072.
Chen, Z. Q., Karlsson, B., Lundqvis, S. O., Gil, M. R. G., Olsson, L., & Wu, H. X. (2015). Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce. Annals of Forest Science, 72, 499–508. doi:10.1007/s13595-015-0458-9
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., ter Steege, H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380. doi: 10.1071/BT02124
Curtis, R. O. (1967). Height-diameter and height-diameter-age equations for second-growth douglas-fir. Forest Science, 13(4), 365–375. doi:10.1093/forestscience/13.4.365.
Damayanti, A., Siregar, U. J., & Dwiyanti, F. G. (2020). Potency estimation of forest stands biomass in Gunung Walat Educational Forest, Sukabumi, West Java as fuel for electricity generation. IOP Conference Series: Earth and Environmental Science, 528, 012062. doi:10.1088/1755-1315/528/1/012062
Darmawan, M. A., Ramadhan, B. Z., Harahap, A. F. P. et al. (2020). Reduction of the acidity and peroxide numbers of tengkawang butter (Shorea stenoptera) using thermal and acid activated bentonites. Heliyon, 6(12), e055742. doi: 10.1016/j.heliyon.2020.e05742
Dhaka, R. K., Gunaga, R. P., Sinha, S. K., Thakur, N. S., & Dobriyal, M. J. (2020). Influence of tree height and diameter on wood basic density, cellulose, and fibre characteristics in Melia dubia Cav. Families. Journal of the Indian Academy of Wood Science, 17, 138–144. doi:10.1007/s13196-020-00265-x.
Evans, J. (1992). Plantation forestry in the tropics (2nd ed.). New York, NY: Oxford University Press Inc.
Forest Area Consolidation Center Agency Denpasar VIII (Balai Pemantapan Kawasan Hutan Wilayah VIII Denpasar). (2021). Enumerasi TSP/PSP-pengolahan data. Denpasar, ID: Balai Pemantapan Kawasan Hutan Wilayah VIII Denpasar, Ministry of Forestry and Environment of Republic Indonesia. pp 5–6.
Fundova, I., Funda, T., & Wu, H. X. (2018). Non-destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn. PLoS ONE, 13(9), e0204518. doi: 10.1371/journal.pone.0204518
Gregory, D., Jensen, P., Matthiesen, H., & Straetkvern, K. (2007). The correlation between bulk density and shock resistance of waterlogged archaeological wood using the pilodyn. Studies in Conservation, 52(4), 289–298. http://www.jstor.org/stable/20619517
Harahap, N. N., Siregar, I. Z., & Dwiyanti, F. G. (2018). Root architecture and its relation with the growth characteristics of three planted Shorea species (Dipterocarpaceae). IOP Conference Series: Earth and Environmental Science, 203, 012016. doi: 10.1088/1755-1315-1315/203/1/012016.
Hardjana, A. K., & Suastati L. (2014). Productivity of stands of meranti tembaga (Shorea leprosula Miq.) from the wildings and cuttings. Jurnal Penelitian Dipterokarpa, 8(1), 47–58.
Hartley, J., & Marchant, J. (1995). Technical Paper No. 41: Methods of determining the moisture content of wood. Sydney: Research Division of State Forests of New South Wales. pp. 3–4.
Heri, V., Bakara, D. O., Mulyana, A., Moeliono, M. & Yuliani, E. L. (2020). Illipe nut as the ‘glue’ for integrated watershed management: Experiences from the Labian-Leboyan watershed. CIFOR Info Brief, 295, 1–8. doi: 10.17528/cifor/007718
Hidayati, F., Ishiguri, F., Iizuka, K., Makino, K., Takashima, Y., Danarto, D., Winanrni. W. W., Irawati, D., Na’iem, M., Yakota, S., & Yoshizawa, N. (2013). Growth characteristics, stress-wave velocity, and pilodyn penetration of 15 clones of 12 years old Tectona grandis trees planted at two different sites in Indonesia. Journal of Wood Science, 59(3), 249–254. doi:10.1007/s10086-012-1320-4.
Hidayati F, Lukamandaru G, Indrioko S, Sunarti S, Nirsatmanto A. 2019. Variation in tree growth characteristics, pilodyn penetration, and stress-wave velocity in 65 families of Acacia mangium trees planted in Indonesia. Journal Korean Wood Science Technology, 47(5), 633–643. doi:10.5658/WOOD.2019.47.5.633.
IBM Corp. (2020). IBM SPSS statistics for Windows, version 27.0. Armonk, NY: IBM Corp.
Indrioko, S., Widiyatno, & Wicaksono, B. A. (2020). The adaptability of six introduced Shorea spp. to the community forest in Sleman, Yogyakarta. Advances in Biological Sciences Research, 14, 200–204.
Istomo, Wibowo, C., & Hidayati, N. (1999). Growth evaluation of meranti (Shorea spp.) plantation at Haurbentes, BKPH Jasinga KPH Bogor, Perum Perhutani Unit III Jawa Barat. Jurnal Manajemen Hutan Tropika, 2, 13–22.
Jaakkola, T., Mäkinen, H., & Saranpää, P. (2006). Wood density of Norway spruce: responses to timing and intensity of first commercial thinning and fertilization. Forest Ecology and Management, 237, 513–521. doi:10.1016/j.foreco.2006.09.083.
Kalanatarifard, A., & Yang, G. S. (2012). Identification of the municipal solid waste characteristics and potential of plastic recovery at Bakri Landfill, Muar, Malaysia. Journal of Sustainable Development, 5(7), 11–17. doi:10.5539/jsd.v5n7p11
Karlinasari, L., Andini, S., Worabai, D., Pamungkas, P., Budi, S. W., & Siregar, I. Z. (2018). Tree growth performance and estimation of wood quality in plantation trials for Maesopsis eminii and Shorea spp. Journal of Forestry Research, 29, 1157–1166. doi:10.1007/s11676-017-0510-8
Ketaren, S. (2008). Pengantar teknologi minyak dan lemak pangan. (in Indonesian) Jakarta: Universitas Indonesia Press.
Kettle, C. J. (2010). Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodiversity and Conservation, 19, 1137–1151. doi:10.1007/s10531-009-9772-6
King, D. A., Davies, K. J., Tan, S., MD Noor, & N. S. (2006). The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal Ecology, 94, 670-680. doi:10.1111/j.1365-2745.2006.01112.x.
Konopka, J., Petras, R., & Toma, R. (1987). Slenderness coefficient of the major tree species and its importance for static stability of stands. Lesnictvi (Prague), 33, 887–904.
Krisnawati, H., & Wahjono, D. (2010). Effect of post-logging silvicultural treatment on growth rates of residual stand in a tropical forest. Journal of Forestry Research, 7(2), 112–124. doi:10.20886/ijfr.2010.7.2.112-124.
Larsen, D. R., & Hann, D. W. (1987). Research Paper 49: Height–diameter equations for seventeen tree species in Southwest Oregon. Oregon: Forest Research Lab. Oregon State University.
Leksono, B., & Hakim, L. (2018). Variation in illipe nut’s fat yield of tengkawang-producing Shorea from several provenance and land races. Journal of Forest Science, 12, 212–222.
Lipp, M., & Anklam, E. (1998). Review of Cacao butter and alternative fats for use in Chocolate-part A. Compositional data. Food Chemistry, 62(1), 73–97. doi: 10.1016/S0308-8146(97)00160-X.
Minitab, LLC. (2021). Minitab. Retrieved from https://www.minitab.com.
Muller-Landau, H. C. (2004). Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 36(1), 20–32. doi:10.1111/j.1744-7429.2004.tb00292.x
Newman, M. F., Burgess, P. F., & Whitmore, T. C. (1999). Pedoman identifikasi pohon-pohon Dipterocarpaceae. (in Indonesian). Bogor: Prosea Indonesia
Nugroho, N. P. (2014). Relationship between total tree height and diameter at breast height for tropical peat swamp forest tree species in Rokan Hilir District, Riau Province. Indonesian Journal of Forestry Research, 1(2), 89–107. doi:10.20886/ijfr.2014.1.2.89-107.
Oliveira, A. M. (1987). The H/D ratio in maritime pine (Pinus pinaster) stands. In Proceedings of the IUFRO Conference Vol. 2 Forest Growth Modelling and Prediction. Ed Ek, A.R., Shifley, S. R., Burk, T. E. Vienna: International Union of Forest Research Organizations. pp. 881–888.
Pamoengkas, P., Rachmat, H. H., & Khalifa, N. (2020). The growth of Shorea leprosula at various planting distances and slopes in Gunung Dahu Research Forest, Bogor, Indonesia. Biodiversitas, 21(9), 4396–4404. doi:10.13057/biodiv/d210959.
Paulo, J., Tomé, J., & Tomé, M. (2011). Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 68(2), 295–309. doi:10.1007/s13595-011-0041-y.
Peltola, H., Kilpela ̈inen, H., Sauvala, K., Ra ̈isa ̈nen, T., & Ikonen, V. P. (2007). Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica, 41(3), 489–505.
Purwaningsih. (2004). Ecological distribution of Dipterocarpaceae species in Indonesia. Biodiversitas, 5(2), 89–95. doi:10.13057/biodiv/d050210.
Ramadhani, N. K., Darmawan, M. A., Harahap, A. F. P., Ramadhan, M. Y. A., Silalahi, U. C., & Gozan, M. (2021). Simulation of illipe butter purification originated from West Kalimantan by SuperPro Designer. IOP Conference Series: Journal of Physics, 1726(012013), 1–5. doi: 10.1088/1742-6596/1726/1/012013.
Saner, P., Loh, Y. Y., Ong, R. C., & Hector, A. (2012). Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS ONE, 7(1), e29642. doi:10.1371/journal.pone.0029642.
Setiadi. (2019). Sumber asal benih tengkawang (Shorea spp.) untuk konservasi dan komoditas masyarakat sekitar hutan. In proceedings of Seminar Nasional Pendidikan Biologi dan Saintek (SNPBS) IV. pp 89–98.
Sharma, M., & Parton, J. (2007). Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249(3), 87–198. doi:10.1016/j.foreco.2007.05.006
Simpson, W. T. (1993). Specific gravity, moisture content, and density relationship for wood. Medison, US: Department of Agriculture, Forest Service, Forest Products Laboratory. p.13.
Stuckle, I. C., Siregar, C. A., Supriyanto, & Kartana, J. (2001). Forest health monitoring to monitor the sustainability of Indonesian tropical rain forest (Volume 1). Bogor: ITTO and Seameo Biotrop. p. 124
Sumida, A., Miyaura, T., & Torii, H. (2013). Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiology, 33(1), 106–118. doi:10.1093/treephys/tps127.
Supartini, & Fajri, M. (2014). Fruit production of tengkawang at several topography and tree dimension. Jurnal Penelitian Dipterokarpa, 8(2), 109–116.
Suzuki, E. (1999). Diversity in specific gravity and water content of wood among Bornean tropical rainforest trees. Ecological Research, 14, 211–224. doi:10.1046/j.1440-1703.1999.143301.x.
Temesgen, H., & Gadow, K. V. (2004). Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123(1), 45–51. doi:10.1007/s10342-004-0020-z.
Temesgen, H., Monleon, V. J., & Hann, D. W. (2008). Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research, 38(3), 553–565. doi:10.1139/X07-104.
VanderSchaaf, C. L. (2008). Stand level height-diameter mixed effects models: parameters fitted using loblolly pine but calibrated for sweetgum. In Proceedings of 16th Central Hardwoods Forest Conference (Vol. Gen. Tech. Rep. NRS-P-24) ed Jacobs, D.F., Michler, C.H., Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station.
Wang, C. H., & Hann, D. W. (1988). Research Paper 51: Height–diameter equations for sixteen tree species in the central Willamette Valley of Oregon. Oregon: Forest Research Lab., Oregon State University.
Wang, Y., Titus, S. J., & LeMay, V. M. (1998). Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Canadian Journal of Forest Research, 28(8), 1171–1183. doi:10.1139/cjfr-28-8-1171.
Wahyudi, A., Harianto, S. P., & Darmawan, A. (2014). Tree diversity in the Tahura Wan Abdul Rachman Educational Forest. Jurnal Sylva Lestari, 2(3), 1–10.
Wahyudi, Setiarno, Patricia, E., Hendra, T., Aguswan, Y., & Yosep. (2016). Performance of the high value native species of Shorea parvifolia planted under invasive species of Acacia mangium. International Journal of Applied Environmental Sciences, 11(2), 457–466.
Wei, X., & Borralho, N. M. G. (1997). Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in South East China. Silvae Genetica, 46(4), 245-250.
Widiyatno, Soekotjo, Naiem, M., Purnomo, S., & Setiyanto, P. E. (2014). Early performance of 23 dipterocarp species planted in logged-over rainforest. Journal of Tropical Forest Science, 26(2), 259–266.
Winarni, I., Sumadiwangsa, S., & Setyawan, D. (2004). The effect of growth site, species, and stem diameter of tengkawang trees on seed productivity. Journal of Forest Product Research, 22(1), 23–33.
Winarni, B., Lahjie, A. M., Simarangkir, B. D. A. S., Yusuf, S., & Ruslim, Y. (2017). Tengkawang cultivation model in community forest using agroforestry systems in West Kalimantan, Indonesia. Biodiversitas, 18(2), 765–772. doi:10.13057/biodiv/d180246.
Wistara, N. J., Sukowati, M., & Pamoengkas, P. (2016). The properties of red meranti wood (Shorea leprosula Miq.) from stand with thinning and shade-free gap treatments. Journal of the Indian Academy of Wood Science, 13(1), 21–32. doi:10.1007/s13196-016-0161-y.
Wu, S. J., Xu, J. M., Li, G. Y., Risto, V., Lu, Z. H., Li, B. Q., & Wang, W. (2011). Estimation on basic density and modulus of elasticity of eucalypt clones in Southern China using non-destructive methods. Journal of Tropical Forest Science, 23(1), 51-56.
Yahya, A. F., Damayanti, E. K., & Zuhud, E. A. M. (2015). Traditional forest-related knowledge for ecosystem services in Sundanese ethnic of Sukabumi District, West Java Province, Indonesia. XIV World Forestry Congress Durban, South Africa 11-17 September 2015.
Zabel, R. A., & Morrell, J. J. (2020). Changes in the strength and physical properties of wood caused by decay fungi. In Zabel, R. A., & Morrell, J. J., Wood microbiology: Decay and Its Prevention Chapter 10 (pp 271–291). USA: Academic Press. doi:10.1016/B978-0-12-819465-2.00010-3.
Zhang, L., Bi, H., Cheng, P., & Davis, C. J. (2004). Modeling spatial variation in tree diameter– height relationships. Forest Ecology and Management, 189(1-3), 317–329. doi: 10.1016/j.foreco.2003.09.004.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indonesian Journal of Forestry Research

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in Indonesian Journal of Forestry Research (IJFR) are licensed under the terms of the Creative Commons Attribution International License (CC BY-NC-SA 4.0) with CC BY-NC-SA 4.0 being the latest version.