PREDICTION OF SUSCEPTIBILITY FOR OLD TREES (> 100 YEARS OLD) TO FALL IN BOGOR BOTANICAL GARDEN

Authors

  • Faozan Indresputra National Research and Innovation Agency (BRIN)
  • Rizmoon Nurul Zulkarnaen Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Muhammad Rifqi Hariri Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Fitri Fatma Wardani Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Prima Wahyu Kusuma Hutabarat Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Dwi Setyanti Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Widya Ayu Pratiwi Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency
  • Lutfi Rahmaningtiyas Plant Conservation Research Center and Botanical Garden, National Research and Innovation Agency

DOI:

https://doi.org/10.59465/ijfr.2023.10.1.1-19

Keywords:

aged trees, 100 years old, probability to fall, model predictions

Abstract

Preservation effort to prevent tree collections loss even on aged trees (> 100 years old) is one of important missions in Bogor Botanical Garden since its establishment in 1817. Abiotic factors such as global warming and biotic factors from pests and diseases can threaten the survival of aged tree collections. Their survival is also influenced by plant health’s deterioration as they age. As the BBG has many functions not only for conservation but also for human ecological activities, fallen tree accidents are becoming primary concern to prevent biodiversity loss and people’s lives. We examined 154 trees health to determine a falling probability of 1106 aged trees based on several factors that caused to fall in the past and to make model prediction generated by nine supervised machine learning algorithms. We also classify susceptibility of tree families prone to fall from the highest accuracy of algorithm prediction. Inverse Distance Weighted interpolation method was used to depict zone map of trees prone to fall. The prediction showed that Random Forest model had the highest accuracy and low false negative (FN) value which were important to minimize error calculation on aged trees was not prone to fall but it turns out to be prone to fall. It predicted 885 trees prone to fall which 358 had high probability to fall. Fabaceae, Lauraceae, Moraceae, Meliaceae, Dipterocarpaceae, Sapindaceae, Rubiaceae, Myrtaceae, Araucariaceae, Malvaceae, and Anacardiaceae were tree families that were highly predicted to fall.

Downloads

Download data is not yet available.

References

Achlioptas, P., & Stanford. (2017). Stochastic Gradient Descent in Theory and Practice. Stanford, pp. 1–16.

Affandi, S. D., Halimatussadiah, A., & Asrofani, F. W. (2020). Visitors’ preferences on the characteristics of bogor botanical gardens. Sustainability (Switzerland), 12(22), 1–18. https://doi.org/10.3390/su12229489.

Agarwal, S., Jha, B., Kumar, T., Kumar, M., & Ranjan, P. (2019). Hybrid of Naive Bayes and Gaussian Naive Bayes for Classification: A Map Reduce Approach. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(6), 266–268.

Appanah, S., & Turnbull, J. M. (1996). A review of Dipterocarps. In Center for International Forestry Research (Vol. 7). https://doi.org/10.1021/acs.jnatprod.5b00916

Ariati, S. R., Astuti, R. S., Supriyatna, I., Yuswandi, A. Y., Setiawan, A., Saftaningsih, D., & Pribadi, D. O. (2019). An Alphabetical List of Plant Species Cultivated in The Bogor Botanic Gardens.

Ashari, H., Arifianto, D., & Faruq, H. A. Al. (2020). Perbandingan kinerja algoritma multinomial Naïve Bayes ( Mnb ), multivariate bernoulli dan rocchio algorithm dalam klasifikasi konten berita hoax berbahasa Indonesia Pada media sosial (Universitas Muhammadiyah Jember). Retrieved from http://repository.unmuhjember.ac.id/id/eprint/5387.

Australian National Botanic Gardens. (2016). Tree management strategy 2016-2026. Retieved from https://www.anbg.gov.au/gardens/about/management/policy-docs/ANBG-tree-management-strategy-2016-2026.pdf.

Balakumar, B., Raviraj, P., & Sivaranjani, K. (2018). Prediction of Survivors in Titanic Dataset: A Comparative Study using Machine Learning Algorithms. International Journal of Emerging Research in Management and Technology, 6(6), 1. doi://10.23956/ijermt.v6i6.236.

Charbuty, B., & Abdulazeez, A. (2021). Classification Based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20–28.

Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222. doi://10.1007/s10333-012-0319-1.

Chen, G., & Sun, W. (2018). The role of botanical gardens in scientific research, conservation, and citizen science. Plant Diversity, 40(4), 181–188. doi://10.1016/j.pld.2018.07.006

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August, 785–794. doi://10.1145/2939672.2939785.

Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53(2), 209–234. doi://10.2307/1942495.

Cutler, A., Cutler, D. R., & Stevens, J. R. (2011). Chapter: Random Forests. In Machine Learning (pp. 1–20). doi://10.1007/978-1-4419-9326-7.

Darussalam, A. D., Sugiyanto, D. R., & Lubis, D. P. (2021). Analisis krisis public relations pada peristiwa tumbangnya pohon di Kebun Raya Bogor. Profesi Humas Jurnal Ilmiah Ilmu Hubungan Masyarakat, 5(2), 251. doi://10.24198/prh.v5i2.29439.

De Sa, C., Olukotun, K., & Ré, C. (2015). Global convergence of stochastic gradient descent for some non-convex matrix problems. 32nd International Conference on Machine Learning, ICML 2015, 3, 2322–2331.

Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. doi://10.1038/nature16489.

FAO. (2007). Overview of Forest Pests, Thailand. Forestry Department. Retrieved from https://www.fao.org/publications/card/en/c/96d227ec-977d-5f16-858f-878c8e370a36/.

Galbraith, D. A., Iwanycki, N. E., McGoey, B. V., McGregor, J., Pringle, J. S., Rothfels, C. J., & Smith, T. W. (2011). The evolving role of botanical gardens and natural areas: A floristic case study from royal botanical gardens, Canada. Plant Diversity and Resources, 33(1), 123–131. doi://10. 3724/ SP. J. 1143. 2011. 10235.

García-Gonzalo, E., Fernández-Muñiz, Z., Nieto, P. J. G., Sánchez, A. B., & Fernández, M. M. (2016). Hard-rock stability analysis for span design in entry-type excavations with learning classifiers. Materials, 9(7), 1–19. doi://10.3390/ma9070531.

Geekiyanage, N., Goodale, U. M., Cao, K., & Kitajima, K. (2018). Leaf trait variations associated with habitat affinity of tropical karst tree species. Ecology and Evolution, 8(1), 286–295. doi://10.1002/ece3.3611.

Hamzah, R., & Prayogo T. (2014). Interpolation methods for sea surface height mapping. International Journal of Remote Sensing and Earth Sciences, 11(1), 33–40.

Hanley, M. E., Lamont, B. B., Fairbanks, M. M., & Rafferty, C. M. (2007). Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 157–178. doi://10.1016/j.ppees.2007.01.001.

Hurley, B. P., Slippers, B., Sathyapala, S., & Wingfield, M. J. (2017). Challenges to planted forest health in developing economies. Biological Invasions, 19(11), 3273–3285. doi://10.1007/s10530-017-1488-z.

Khan, A. U., Choudhury, M. A. R., Maleque, M. A., Dash, C. K., Talucder, M. S. A., Maukeeb, A. R. M., … Adnan, M. (2021). Management of insect pests and diseases of jackfruit (Artocarpus heterophyllus l.) in agroforestry system: a review. Acta Entomology and Zoology, 2(1), 37–46. doi://10.33545/27080013.2021.v2.i1a.29.

Kitajima, K., & Myers, J. A. (2008). Seedling ecophysiology : strategies toward achievement of positive net carbon balance. In: M. A. Leck, V. T. Parker, and R. L. Simpson. Seedling Ecology and Evolution, Chapter 8(Cambridge University Press), 172–188.

Koeser, A. K., Hasing, G., Mclean, D., & Northrop, R. (2016). Tree Risk assessment methods: A comparison of three common evaluation forms. Universiry of Florida. Retrieved from https://edis.ifas.ufl.edu/pdf/EP/EP48700.pdf

Kong, D. L., Wang, J. J., Kardol, P., Wu, H. F., Zeng, H., Deng, X. B., & Deng, Y. (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13(2), 415–424. doi://10.5194/bg-13-415-2016.

Kong, D., Wang, J., Kardol, P., Wu, H., Zeng, H., Deng, X., & Deng, Y. (2015). The root economics spectrum: divergence of absorptive root strategies with root diameter. Biogeosciences Discussions, 12(15), 13041–13067. doi://10.5194/bgd-12-13041-2015.

Krishnan, S., & Novy, A. (2016). The role of botanic gardens in the twenty-first centuryy. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 11(December 2016). doi://10.1079/PAVSNNR201611023.

Kumar, R., & Indrayan, A. (2011). Receiver Operating Characteristic (ROC) Curve for Medical Researchers. Indian Pediatrics, 48, 277–287. doi://10.1007/s13312-011-0055-4.

Louppe, G. (2015). PhD dissertation: Understanding random forests: From theory to practice. Retrieved from http://arxiv.org/abs/1407.7502.

Nair, K. S. S. (2000). Insect pests and diseases in Indonesian forest: an assessment of the major threats, research efforts and literature. In Center for International Forestry Research. doi://10.17528/cifor/000700.

Nakamura, R., Cornelis, J. T., de Tombeur, F., Yoshinaga, A., Nakagawa, M., & Kitajima, K. (2020). Diversity of silicon release rates among tropical tree species during leaf-litter decomposition. Geoderma, 368(February), 114288. doi://10.1016/j.geoderma.2020.114288.

Nakamura, R., Ishizawa, H., Wagai, R., Suzuki, S., Kitayama, K., & Kitajima, K. (2019). Silicon cycled by tropical forest trees: Effects of species, elevation and parent material on Mount Kinabalu, Malaysia. Plant and Soil, 443(1–2), 155–166. doi://10.1007/s11104-019-04230-7.

Ocak, R. Ö., & Kurtaslan, B. Ö. (2017). Education Function of Botanical Gardens. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(June 2015), 6.

Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M. F., Clissold, F. J., Cornelissen, J. H. C., … Yamashita, N. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14(3), 301–312. doi://10.1111/j.1461-0248.2010.01582.x.

Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447–1463. doi://10.1111/nph.14496.

Palmiotto, P. A., Davies, S. J., Vogt, K. A., Ashton, M. S., Vogt, D. J., & Ashton, P. S. (2004). Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology, 92(4), 609–623. doi://10.1111/j.0022-0477.2004.00894.x.

Powledge, F. (2011). The evolving role of botanical gardens. BioScience, 61(10), 743–749. https://doi.org/10.1525/bio.2011.61.10.3

Rachmadiyanto, A. N., Wanda, I. F., Rinandio, D. S., & Magandhi, M. (2020). Evaluasi kesuburan tanah pada berbagai tutupan lahan di Kebun Raya Bogor. Buletin Kebun Raya, 23(2), 114–125. doi://10.14203/bkr.v23i2.263.

Rahman, I. F. (2020). Implementasi metode support vector machine, multilayer perceptron dan xgboost pada data ekspresi gen. Retrieved from https://dspace.uii.ac.id/handle/123456789/23679.

Razali, M., & Wandi, R. (2019). Inverse distance weight spatial interpolation for topographic surface 3D modelling. TECHSI - Jurnal Teknik Informatika, 11(3), 385. doi://10.29103/techsi.v11i3.1934.

Read, J., Gras, E., Sanson, G. D., Clissold, F., & Brunt, C. (2003). Does chemical defence decline more in developing leaves that become strong and tough at maturity? Australian Journal of Botany, 51(5), 489–496. doi://10.1071/BT03044.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. Retrieved from http://arxiv.org/abs/1609.04747.

Schulman, L., & Lehvävirta, S. (2011). Botanic gardens in the age of climate change. Biodiversity and Conservation, 20(2), 217–220. doi://10.1007/s10531-010-9979-6.

Singh, G., Kumar, B., Gaur, L., & Tyagi, A. (2019). Comparison between multinomial and Bernoulli Naïve Bayes for text classification. 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, (May 2020), 593–596. doi://10.1109/ICACTM.2019.8776800.

Song, S., Chaudhuri, K., & Sarwate, A. D. (2013). Stochastic gradient descent with differentially private updates. 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, (December 2013), 245–248. doi://10.1109/GlobalSIP.2013.6736861.

Verbeeck, H., Bauters, M., Jackson, T., Shenkin, A., Disney, M., & Calders, K. (2019). Time for a plant structural economics spectrum. Frontiers in Forests and Global Change, 2(August), 1–5. doi://10.3389/ffgc.2019.00043.

Wagner, M. R., Cobbinah, J. R., & Bosu, P. P. (2008). Forest entomology in West Tropical Africa: Forests insects of Ghana. In Forest Entomology in West Tropical Africa: Forests Insects of Ghana. doi://10.1007/978-1-4020-6508-8.

Wang, Y., Zhang, Y., Lu, Y., & Yu, X. (2020). A Comparative Assessment of Credit Risk Model Based on Machine Learning : a case study of bank loan data. Procedia Computer Science, 174, 141–149. doi://10.1016/j.procs.2020.06.069.

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior, 7(10), 1306–1320.

Whittaker, R. J., Bush, M. B., & Richards, K. (1989). Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecological Monographs, 59(2), 59–123. doi://10.2307/2937282.

Wibawa, A. P., Kurniawan, A. C., Murti, D. M. P., Adiperkasa, R. P., Putra, S. M., Kurniawan, S. A., & Nugraha, Y. R. (2019). Naïve Bayes Classifier for Journal Quartile Classification. International Journal of Recent Contributions from Engineering, Science & IT (IJES), 7(2), 91. doi://10.3991/ijes.v7i2.10659.

Zhang, Z. (2016). Introduction to machine learning: K-nearest neighbors. Annals of Translational Medicine, 4(11). doi://10.21037/atm.2016.03.37.

Zhao, Y. T., Ali, A., & Yan, E. R. (2017). The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiology, 37(2), 173–185. doi://10.1093/treephys/tpw098.

Downloads

Published

30-04-2023

How to Cite

Indresputra, F., Zulkarnaen, R. N., Hariri, M. R., Wardani, F. F., Hutabarat, P. W. K., Setyanti, D., Pratiwi, W. A., & Rahmaningtiyas, L. (2023). PREDICTION OF SUSCEPTIBILITY FOR OLD TREES (> 100 YEARS OLD) TO FALL IN BOGOR BOTANICAL GARDEN. Indonesian Journal of Forestry Research, 10(1), 1–19. https://doi.org/10.59465/ijfr.2023.10.1.1-19