COMPATIBILITY OF SOME ADHESIVES WITH BATANG RATTAN (Calamus zollingeri Becc.) AS RAW MATERIAL OF RATTAN LAMINATED BOARD
Keywords:
Calamus zollingeri Becc., bonding strength, formaldehyde emission, rattan laminated board, natural adhesivesAbstract
Rattan in Indonesia is traditionally utilized for furniture, binding materials, household appliances, and handicraft items. Small diameter rattans are commonly used by craftsmen, while large diameter rattans are not optimally utilized. Large diameter rattan, however, has potential to be developed into rattan laminated board (RLB) by gluing rattan strips using appropriate adhesive. Nevertheless, the information of the suitable natural adhesive for RLB production is still limited. Laboratory scale of RLBs with the dimensions of 60 cm x 7.5 cm x 1.5 cm were manufactured using batang rattan strips (Calamus zollingeri Becc.). The strips were glued with six types of adhesives (4 types of natural adhesives and 2 types of commercial synthetic adhesives) and three glue spread rates of (100, 150, and 200 g/m2) were used. The study objective was to determine the effect of rattan pre-treatments, adhesive types and glue spread rates on the bonding quality and formaldehyde emission of RLBs. The results showed that batang rattan can be processed into RLBs by using natural adhesives originating from wood bark extract (mangium, mahogany), merbau wood powder, as well as commercial synthetic adhesives such as isocyanate and polyurethane. The appropriate pre-treatment in producing RLBs for interior furniture was by applying oil heat treatment with kerosene solution (80 kerosene : 20 water) and glued with tannin adhesive of mangium bark extract with glue spread of 200 g/m2. Similarly, rattan strips treated with heated oil (80 kerosene : 20 water) and glued with polyurethane adhesive (glue spread of 200 g/m2) produced excellent RLBs for exterior furniture.
Downloads
References
Adefisan, O. O. (2011). Suitability of Eremospatha macrocarpa canes for the production of cement-bonded composites. Journal of Tropical Forest Science, 23(4), 379-382.
Ahmad, Z., Tajuddin, M., Maleque, A., & Halim, Z. (2019). Effects of particle sizes on the properties of binderless boards made from rattan furniture waste. Journal of Engineering Science, 15, 49–61. doi://10.21315/jes2019.15.5.
Akpenpuun T. D., Adeniran, K.A., & Okanlawon O. M. (2017). Rattan cane reinforced concrete slab as a component for agricultural structures. Nigerian Journal of Pure and Applied Science, 30(1), 3007–3013.
Akzonobel. (2001). Synteko phenol-resorcinol adhesive 1711 with hardeners 2734, casco adhesive (Asia). doi://10.3923/pjbs.2008.2007.2012.
Eichenseer, C., Will, J., Rampf, M., Wend, S., & Greil, P. (2010). Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus rotang). Journal of Materials Science: Materials in Medicine, 21(1), 131-137.
Hendrik, J., Hadi, Y. S., Massijaya, M. Y., Santoso, A., & Park, B. D. (2018). Penetration and adhesion strength of phenol-tannin-formaldehyde resin adhesives for bonding three tropical woods. Forest Products Journal, 68(3), 256–263. doi://10.13073/FPJ-D-17-00032.
Hendrik, J., Hadi, Y. S., Massijaya, M. Y., Santoso, A., & Pizzi, A. (2019). Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives. Journal Korean Wood Science and Technology, 47(3) 253–64.
JAS, (Japanese Agricultural Standard). (2003). Glued Laminated Timber (JAS 234-2003). Japanese Plywood Inspection Corporation (JPIC). JIS, (Japanese Industrial Standard). (1994). General testing method for adhesives. JIS K 6833:1994. https://www.techstreet.com/standards/jis-k-6833-1994?product_id=1232176# jumps
Lestari, A. S. R. D., Hadi, Y. S., Hermawan, D., & Santoso, A. (2015). Glulam properties of fast-growing species using mahogany tannin adhesive. BioResources, 10(4), 7419–7433. doi://10.15376/biores.10.4.7419-7433.
Lestari, A. S. R. D., Hadi, Y. S., Hermawan, D., & Santoso, A. (2018). Physical and mechanical properties of glued laminated lumber of pine (Pinus merkusii) and jabon (Anthocephalus cadamba). Journal of Korean Wood Science Technology, 46(2), 143–148. doi://10.5658/WOOD.2018.46.2.143.
Malik, J., Santoso, A., Mulyana, Y., & Ozarska, B. (2016). Characterization of merbau extractives as a potential wood-impregnating material. BioResources, 11(3), 7737–7753. doi: //10.15376/biores.11.3.7737-7753.
Maloney, T. (1977). Modern particleboard and dry-process fiberboard manufacturing. San Francisco. Millerfreeman publication.
Ministry of Industry. (2019). Top! Export of National Furniture Products Reaches Rp 23.66 T. Retrieved October 18, 2022. https://www.cnbcindonesia.com/news/20190310143223-4-59732/ topekspor-produk-furnitur-nasional-tembus-rp-2366-t.
Munshi, M. R., Alam, S. S., Haque, M. M., Shufian, A., Rejaul Haque, M., Gafur, M. A., Rahman, F., & Hasan, M. (2020). An experimental study of physical, mechanical, and thermal properties of rattan-bamboo fiber reinforced hybrid polyester laminated composite. Journal of Natural Fibers, 17, 1–15. doi://10.1080/15 440478.2020.1818354.
Muthmainnah. (2011). Pembuatan Cross Laminated Timber (CLT) dari kayu sengon dan kecapi. (Thesis). Institut Pertanian Bogor. Bogor.
Olorunnisola A. O., & Adefsan, O. O. (2002). Trial production and testing of cement-bonded particleboard from rattan furniture waste. Wood and Fibre Science, 1(1), 116–124.
Olorunnisola, A. O., & Agrawal, S. (2015). Effects of NaOH concentration and fibre content on physico-mechanical properties of cement-bonded rattan fibre composites. Pro Ligno, 11(4), 192–198.
Olorunnisola, A. O., & Agrawal, S. P. (2018). Effects of CaCl2 and NaCl on strength and sorption properties of cement-bonded rattan composite panels. Pro Ligno, 14(1), 21–28. http://www.proligno.ro/ro/articles/2018/1/OLORUNNISOLA.pdf.
Olorunnisola, A. O., & Asimiyu, A. K. (2016). Effects of Cissus populnea and rubber latexl on physico-mechanical properties of cement-bonded rattan composites. Journal of Civil Engineering and Construction Technology, 7(3), 20–27.
Pari, R., Abdurachman, & Santoso, A. (2019). Keteguhan rekat dan emisi formaldehida papan lamina rotan menggunakan perekat tanin formaldehida. Jurnal Penelitian Hasil Hutan, 37(1), 33–41.doi://10.20886/ JPHH.2019.37.1.33-41.
Pizzi, A. (1983). Wood adhesives: Chemistry and technology. New York. Marcel Dekker.
Pujiati, R. (2017). Produksi furnitur Indonesia. In Z. Salim & E. Munadi (Eds.), Bunga rampai info komoditi furnitur (pp. 7–36). Badan Pengkajian dan Pengembangan Perdagangan Kemendagri. http://bppp.kemendag.go.id/media_content/2017/10/Isi_BRIK_FURNITUR.pdf.
Rachman, O., & Jasni. (2013). Rotan. Sumberdaya,sifat dan pengolahannya. Pusat Penelitian dan Pengembangan Keteknikan Kehutanan dan Pengolahan Hasil Hutan, Bogor.
Sahoo, S. K., Mohanty, J. R., Nayak, S., & Behera, B. (2019). Chemical treatment on rattan fibers: Durability, mechanical, thermal, and morphological properties. Journal of Natural Fibers, 16, 1–10. doi://10.1080/15440478.2019.1697995.
Santoso, A., & Pari, R. (2020). Quality of rattan board with lamination process using tannin-based adhesives. IOP Conference Series: Materials Science and Engineering, 935(1). doi://10.1088/1757-899X/935/1/012029.
Santoso, A., Hadi, Y. S., & Malik, J. (2012). Tannin resorcinol formaldehyde as potential glue for the manufacture of plybamboo. Indonesian Journal of Forestry Research, 9(1), 10–15. doi://10.20886/ijfr.2012.9.1.10-15.
Santoso, A., Pari, G., & Jasni. (2015). Kualitas papan lamina dengan perekat resorsinol dari ekstrak limbah kayu merbau. Jurnal Penelitian Hasil Hutan, 33(3), 253–260. doi://10.20886/jphh.2015.33.3.253-260.
Santoso, A., Sulastiningsih, I. M., Pari, G., & Jasni. (2016a). Pemanfaatan ekstrak kayu merbau untuk perekat produk laminasi bambu. Jurnal Penelitian Hasil Hutan, 34(2), 89–100. doi://10.20886/jphh.2016.34.2.89-100.
Santoso, A., Sulastiningsih, I. M., Jasni, J., Abdurachman, A., Pari, R., & Tellu, T. (2016b). Teknologi pembuatan rotan komposit. Laporan Hasil Penelitian. Bogor: Pusat Penelitian dan Pengembangan Hasil Hutan.
SNI (Standar Nasional Indonesia). (1998). Kumpulan SNI Perekat. Jakarta: Badan Standardisasi Nasional.
SNI (Standar Nasional Indonesia). (2005). SNI 01-7147-2005 Venir Lamina. Jakarta: Badan Standardisasi Nasional.
Sulastiningsih, I., Trisatya, D., & Sukadaryati. (2019). Characteristics of rattan composite lumber made of Calamus zollingeri - IOPscience. IOP Conference Series: Earth and Environmental Science, Volume 359, International Conference on Forest Products 2 November 2018, Bogor, Indonesia. https://iopscience.iop.org/article/10.1088/1755-1315/359/1/012012/meta.
Vick, C. B. (1999). Adhesive bonding of wood material. In Wood Handbook: Wood as an engineering material. Madison, WI. Forest Product Society.
Yap, K. H. F. (1984). Konstruksi kayu. Bandung. Bina Cipta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IJFR
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.