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ABSTRACT 
In forest biomass assessment studies, the selection or development of  reliable allometric biomass equations 

is an essential step which determines largely the accuracy of  the resulted biomass estimates. Unfortunately, 
only few studies on allometric biomass equations have been conducted for peat swamp forests and the results 
are usually not publicly accessible or well documented. Thus, the objective of  this study was to develop site-
specific allometric equations for above-ground biomass (AGB) estimations in tropical peat swamp forests in 
Indonesia. These equations were developed based on 51 destructively sampled trees. The results indicated that 
the developed site-specific allometric equations have coefficient of  determination (R2) greater than 95%. The 
R2 values ranged from 97.0% to 98.7%, where the lowest R2 value resulted from the simplest model which used 
only DBH as a predictor. Model 5, which used DBH, H and ρ as predictive variables, provided best performance 
when estimating the AGB of  the study area. Hence, as long as reliable data are available as input, Model 5 is 
recommended. The accuracy and applicability of  the allometric equations for peat swamp forests could be 
improved further by adding more sampled trees from different tree species and/or with a wider DBH range. 
Considering the importance of  wood density in the estimation of  the AGB and the lack of  this information for 
peat swamp forest tree species, research should be dedicated to analysing the wood density of  the dominant tree 
species comprising the majority of  the AGB density in the study area.
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ABSTRAK
Dalam kajian-kajian penaksiran biomassa hutan, pemilihan atau pengembangan persamaan-persamaan 

alometrik biomassa yang dapat diandalkan merupakan langkah penting yang sangat menentukan ketepatan 
dari dugaan biomassa yang dihasilkan. Sayangnya, hanya sedikit kajian-kajian tentang persamaan alometrik 
biomassa yang dilakukan di hutan rawa gambut dan hasil-hasilnya biasanya tidak dapat diakses secara umum atau 
terdokumentasi dengan baik. Jadi, kajian ini bertujuan untuk mengembangkan persamaan-persamaan alometrik 
spesifik tapak untuk pendugaan biomassa atas permukaan di hutan rawa gambut di Indonesia. Persamaan-
persamaan tersebut dikembangkan berdasarkan 51 pohon contoh yang ditebang. Hasil dari kajian ini menunjukkan 
bahwa persamaan-persamaan alometrik yang dikembangkan mempunyai koefisien determinasi lebih dari 95% 
dengan rentang nilai mulai dari 97,0% sampai dengan 98,7%. Dalam hal ini, koefisien determinasi yang paling 
rendah dihasilkan oleh persamaan alometrik yang paling sederhana dengan satu peubah, yaitu diameter setinggi 
dada (Model 1). Model 5 yang menggunakan tiga peubah (diameter setinggi dada, tinggi total dan kerapatan 
kayu) menghasilkan dugaan biomassa atas permukaan yang paling baik di wilayah kajian. Oleh karena itu, selama 
data peubah tersebut tersedia, maka Model 5 direkomendasikan dalam pendugaan biomassa atas permukaan 
di hutan rawa gambut. Ketepatan dan penerapan dari persamaan-persamaan alometrik ini dapat ditingkatkan 
dengan menambahkan pohon contoh dari jenis lain dan/atau dengan rentang diameter setinggi dada yang lebih 
besar. Mempertimbangkan pentingnya kerapatan kayu dalam pendugaan biomassa dan kurangnya informasi ini 
untuk jenis-jenis pohon di hutan rawa gambut, maka penelitian perlu dilakukan untuk menganalisis kerapatan 
kayu untuk jenis-jenis dominan yang menyumbang kerapatan biomassa terbesar pada wilayah kajian. 

Kata kunci: Spesifik tapak, persamaan alometrik, biomassa atas permukaan, hutan rawa gambut, Riau

1
Research Institute for Forestry Technology on Watershed Management, Jl. Jend. A. Yani Pabelan Kotak Pos 295, Surakarta, Central Java 57012 - 

Indonesia
*Corresponding Author: np_nugroho04@yahoo.com



I. INTRODUCTION

Accurate estimation of  above- and below-
ground biomass (AGB and BGB) in tropical 
peat swamp forest ecosystems is important 
to understand their roles in the global carbon 
cycle, particularly in relation to climate change. 
Reliable information on the biomass (“organic 
material both above-ground and below-ground, 
and both living and dead”(FAO, 2006, p.172), 
expressed as oven-dry ton or Megagramme 
(Mg) per ha) of  forest ecosystem is also crucial 
for assessing forest structure and condition 
(Chave et al., 2003; Zianis, 2008; Návar, 2009), 
forest productivity (Clark et al., 2001; Zianis, 
2008) and nutrients cycle and energy fixation 
(Zianis et al., 2005; Zianis, 2008). Biomass is also 
an indicator of  site productivity (Návar, 2009), 
both in biological and economical terms (Cole 
and Ewel, 2006) and is important to support 
the implementation of  sustainable forest 
management (Zianis et al., 2005; Labrecque et 
al., 2006; Lucas et al., 2006) and the conservation 
of  biodiversity (Lucas et al., 2006). 

Knowledge of  the spatial distribution of  
and changes in the biomass has been required 
for some time but the need is becoming more 
urgent, particularly because of  emerging 
mechanisms for mitigating greenhouse gases 
(GHGs), such as Reducing Emissions from 
Deforestation and forest Degradation (REDD) 
in developing countries (Gibbs et al., 2007; Sierra 
et al., 2007; Basuki et al., 2009; Goetz et al., 2010; 
Saatchi et al., 2011). To best quantify carbon 
dynamics, consecutive measurements of  forest 
biomass (Chambers et al., 2001; Clark et al., 
2001) and accumulation rates (Sierra et al., 2007; 
Návar, 2009; Wijaya et al., 2010; Banskota et al., 
2011) are needed together with information 
on the extent and rate of  forest disturbances 
associated with natural or anthropogenic land 
use changes and fire events (Brown et al., 1995; 
Sierra et al., 2007; Wijaya et al., 2010). 

Many studies on forest biomass assessment 
are focused on AGB (e.g. Brown, 1997; Foody et 
al., 2001; Ketterings et al., 2001; Losi et al., 2003; 
Aboal et al., 2005; Segura and Kanninen, 2005; 
Saatchi et al., 2007; Basuki et al., 2009; Kenzo 
et al., 2009a) because it represents the largest 
carbon pool2 of  forest vegetation and is directly 
impacted by deforestation and degradation 
(Gibbs et al., 2007). Field-based measurement 
is one of  the methods for estimating the 
biomass of  the forest ecosystems (Lu, 2006; 
Anaya et al., 2009). This method is commonly 
conducted by applying allometric biomass 
regression equations or simply allometric 
equations (Brown, 2002; Verwer and Meer, 
2010). These are mathematical equations that 
relate easily-measured variables (e.g. diameter 
at breast height, base diameter and tree height) 
to attributes that are more difficult to assess 
(e.g. standing volume and biomass or leaf  area) 
(Ketterings et al., 2001; Goetz et al., 2010). 

Many allometric equations have been 
developed for tropical forests, with some 
being site-specific and developed from in 
situ harvesting of  sampled trees of  mixed-
species (e.g. Yamakura et al., 1986; Chambers 
et al., 2001; Ketterings et al., 2001; Segura and 
Kanninen, 2005; Jepsen, 2006; Basuki et al., 
2009; Kenzo et al., 2009a; Kenzo et al., 2009b). 
Others (e.g. Brown et al., 1989; Brown, 1997; 
Zianis and Mencuccini, 2004; Chave et al., 2005; 
Pilli et al., 2006) are more generalized having 
been developed from trees sampled across a 
wider geographical range and as a function of  
forest type. Well-known and commonly used 
equations include that of  Brown (1997), which 
was derived from sampled trees collected across 
the pan-tropical region, and Chave et al., (2005), 
which considered the differences between dry 
and wet forest types. These equations have 
used data from the Neotropics, Southeast Asia 
and Oceania, including Indonesia, but none 
of  the sampled trees have been collected from 
peat swamp forests (Verwer and Meer, 2010). 
The use of  allometric equations is advocated 
as direct field measurement, whilst it is more 
accurate (Lu, 2006), but it is also expensive, time 

2 In peat swamp forests, the AGB represents the 
second largest carbon pool after peat soil.
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consuming and labour intensive (Houghton, 
2005). 

Compared to other tropical forest ecosystems, 
peat swamp forest is considered a unique and 
fragile ecosystem (Page et al., 1999; Rieley, 
2007). It is characterized by its occurrence on 
peat soil with high-rainfall, high-temperature, 
waterlogged and acidified substrate conditions 
that lack oxygen (Wösten et al., 2006; Hirano et 
al., 2007; Jaenicke et al., 2008; Posa et al., 2011) 
where the decomposition rate of  woody plant 
debris is slower than the accumulation rate of  
the materials (Maltby and Immirzi, 1993; Rieley 
and Page, 2005). This ecosystem is fragile 
because of  the strong interdependency between 
hydrology, ecology and landscape morphology 
(Page et al., 1999) where a change in any of  
these components will alter and affect the 
balance of  the  ecosystem (Hooijer et al., 2009; 
Hooijer et al., 2010). As a consequence of  this 
characteristic, peat swamp forest ecosystem has 
the potential to store huge amounts of  carbon 
(Sorensen, 1993; Tawaraya et al., 2003; Jaenicke 
et al., 2008), especially as Soil Organic Matter 
(SOM) (Hirano et al., 2007). 

Although peat swamp forest is a significant 
repository of  carbon, disturbance can 
transform it to a large source of  carbon 
emissions (Rieley and Page, 2005). However, 
there is a lack of  information on the amount 
of  the biomass stored within the peat swamp 
forest (Verwer and Meer, 2010). The majority 

of  studies have focused mainly on the impacts 
of  fire and subsequent recovery of  the forest 
ecosystem, the amount of  carbon in the peat 
soils, mycorrhizal activity, and biodiversity (Page 
et al., 2002; Tawaraya et al., 2003; Wahyunto et 
al., 2003; Wahyunto et al., 2004; Wahyunto et al., 
2005; Hooijer et al., 2006; Wahyunto et al., 2006; 
Wösten et al., 2006; Jaenicke et al., 2008; Uryu 
et al., 2008; Wahyunto and Suryadiputra, 2008; 
Wösten et al., 2008; Wahyunto et al., 2010). Few 
studies have been conducted on the biomass of  
the peat swamp forests (e.g. Ludang and Jaya, 
2007; Krisnawati and Imanuddin, 2011; Tan 
et al., 2011) and most have used the available 
generalized or pan-tropical allometric equations 
(e.g. Brown et al., 1989; Brown, 1997; Chave et al., 
2005) instead of  allometric equations specific 
to peat swamp forests and from Indonesia. 
Currently, site-specific allometric equations for 
peat swamp forest that are publicly available are 
limited (see Solichin et al., 2011; Krisnawati et 
al., 2012). Thus, the objective of  this study was 
to develop site-specific allometric equations 
for AGB estimations for tropical peat swamp 
forests, with special reference to peat swamp 
forests in Rokan Hilir District, Riau Province.  

II. MATERIAL AND METHOD

A. Study Site
This study was conducted at the selected 

logging blocks within the concession area 

Figure 1. The selected study site within the forest concession area of  PT. Diamond Raya Timber
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managed by PT. Diamond Raya Timber (PT. 
DRT) (Figure 1) in Rokan Hilir District, Riau 
Province, Indonesia (100°48’ – 101°13’ E and 
1°49’ – 2°18’ N (Istomo, 2002). It is mainly 
covered by the lowland peat swamp forest 
with the dominant commercial species of  
balam (Palaquium obovatum (Griffith) Enql.), 
meranti batu (Shorea uliginosa Foxw.), ramin 
(Gonystylus bancanus (Miq.) Kurz.), and terentang 
(Camnosperma coriaceum (Jack.) Hallier f. ex v. 
Steenis). This forest is also the important habitat 
for the endangered species of  the Sumatran 
tiger (Panthera tigris sumatrae).

The topography of  the area is flat with the 
elevation ranges from 0-8 m a.s.l. (meter above 
sea level). In addition, the area is geologically 
dominated by peat dome along with alluvial and 
marine groups (Istomo, 2002). The dominant 
soil type is thick peat soil with a depth of  
more than 3 m, while the minor ones are gley, 
alluvial and podzolic. Based on the Schmidt 
and Ferguson climate classification, the area 
is classified as A type with Q value of  10.1% 
(Istomo, 2002). The average monthly rainfall 
ranges from 51.3 to 301.6 mm where the 
highest is in November (301.6 mm) and the 
lowest is in March (51.3 mm). Furthermore, the 
mean annual temperature ranges from 25 to 27 
°C and the relative humidity ranges from 79% 
to 90%.

B. Data Collection
The data collection through destructive 

sampling was carried out from August to 
September 2008. A total of  fifty one healthy3 
trees comprising eleven species with the DBH 
ranging from 5.2 to 62.7 cm were felled (details 
are presented in Appendix 1). The sampled 
trees were mainly selected based on dominant 
tree species present in the study area according 
to the available data from the permanent sample 
plot (PSP). Out of  the eleven tree species felled 
during the fieldwork, nine were associated with 
the dominant species. The DBH, which is the 

diameter at 1.3 m above the ground or 30 cm 
above the buttress (FAO, 2004), was measured 
using a diameter tape before the tree was 
felled. The scientific name of  the sample trees 
were verified using the database of  the World 
Agroforestry Centre  (CGIAR, 2008) and a 
previous study (Istomo, 2002). 

After the tree was felled, the total tree height 
(H) was measured using a 50-m measuring tape. 
Then, the sample tree was separated into four 
components: (1) leaves, (2) twigs (diameter < 
3.2 cm), (3) small branches (diameter between 
6.4 cm and 3.2 cm), and (4) large branches 
and stems (diameter > 6.4 cm) following the 
procedure used by Kettering et al., (2001). All 
of  these components were weighed directly in 
the field to obtain their fresh weight using a 
portable hanging balance with 100-kg capacity. 

The subsamples for each component were 
collected from each sampled tree for oven-
dry weight analysis. Depending on the DBH, 
three subsamples (with a minimum weight of  
100 g for each subsample) were collected for 
each component. For large branches and stems, 
small branches and twigs, the subsamples were 
collected from the lower, middle and upper part 
of  the tree for each component pool, whereas 
for leaves, the subsamples were taken from the 
total amount of  the leaves taken from the tree. 
These subsamples were weighed in the field to 
obtain their fresh weight using a small balance 
with 2-kg capacity and stored in sealed plastic 
bags such that moisture was retained before 
sending them to the laboratory. A total of  592 
subsamples from 51 sampled trees were sent to 
the Soil Science Laboratory of  the Faculty of  
Agriculture in Sebelas Maret University (UNS), 
located in Surakarta, Central Java of  Indonesia, 
for oven dry weight analysis. The wood and 
leave subsamples were oven-dried at 105°C 
until a relatively constant weight was obtained 
(Nelson et al., 1999; Ketterings et al., 2001). 
The total dry weight or Dry Matter (DM) of  
the stems were calculated using equation (1)
(Jayaraman, 1999).

3 Healthy tree in this article is defined as a tree without 
broken top or infected by a disease. stem

samples

samples
stem TFW

TFW
TDW

TDW ×= .................................(1)
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where TDWstem is the total dry weight of  the 
stems, TDWsamples is the total dry weight of  the 
stems’ subsamples, TFWsamples is the total fresh 
weight of  the stems’ subsamples and TFWstem is 
the total fresh weight of  the stems. In addition, 
the stump height (l) and diameter  (Dstump) were 
measured to estimate its volume using a cylinder 
volume formula as in equation (2), while its 
dry weight were estimated by multiplying its 
volume with the wood density of  the stem (ρ) 
(Ketterings et al., 2001).

where Vstump is the stump volume, π is a constant 
value (3.142), Dstump is the stump diameter and l is 
the stump height/length. Similarly, the total dry 
weight for all other components of  the tree was 
calculated based on equation (1) by taking into 
account the total dry weight of  the subsamples 
of  the components, the total fresh weight of  
components’ subsamples and the total fresh 
weight of  the components. Moreover, the total 
dry weight of  the sampled tree was calculated 
as the sum of  the dry weight of  its components 
and stump. This refers to the above-ground 
biomass of  the tree (AGBtree). Furthermore, 
data on DBH and H from destructive sampling 
and ρ data from the database of  the World 

Agroforestry Centre  (CGIAR, 2008), which 
are available online, were used to develop site-
specific allometric equations.

C. Data Analysis
1.  Regression models

Three types of  regression models were used 
to develop the biomass equations: (1) Type I 
was developed using DBH (AGBtree – D model), 
(2) Type II was developed using DBH and H 
(AGBtree – D – H model), and (3) Type III was 
developed using DBH, H and ρ (AGBtree – D – 
H – ρ). Details of  these models are presented in 
Table 1. The data analysis for constructing the 
models was carried out using the SPSS® 14.0 
statistical package (SPSS Inc., 2005).

2. Model selection
The model selection was based on six 

statistical parameters, of  which five are 
explained by Parresol (1999): (1) fit index (FI), 
(2) standard error of  estimate in actual unit (Se), 
(3) coefficient of  variation (CV) in percent, (4) 
Furnival’s index (I), and (5) corrected mean 
percent standard error of  prediction ((S (%))
or average (unsigned) deviation (Nelson et al., 
1999; Basuki et al., 2009). The sixth parameter 
is the Akaike’s Information Criterion/AIC 
(Akaike, 1974) calculated using equation (3). 
The best model will have the lowest AIC value.
where AIC is the Akaike’s Information 

4
)( 2 lD

V stump
stump

π
= ........................................(2)

Table 1. Type of  allometric equation models for AGB estimation 

Type Allometric equation Model

I. AGBtree = exp (a + b  × In (D)) 1

II. AGBtree = exp (a + b  × In (D2H)) 2

AGBtree = exp (a + b  × In (D) + C × In (H)) 4

III. AGBtree = exp (a + b  × In (D2Hñ) 3

AGBtree = exp (a + b  × In (D) + c × In (H) + d × In (ñ)) 5

Notes: AGBtree is the above-ground biomass per tree (kg DM tree-1), exp is e raise to the power of, ln is natural 
logarithm, D is the diameter at breast height (cm), H is the total tree height (m), ρ is the wood density or the wood 
specific gravity (g cm-3), and a, b, c, and d are the regression coefficients
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Criterion, C is the number of  observed data, ln 
is natural logarithm, SSe is the residual sum of  
squares, and p* is the number of  parameters or 
coefficient in the models, including intercept.

3.  Model prediction
During the analysis, the field data were 

transformed based on natural logarithm. 
This process introduced a systematic bias of  
the biomass estimates when they were back-
transformed to the actual unit, whereby the 
biomass estimates were usually an underestimate 
of  the actual biomass (Chave et al., 2005). 
For this reason, biomass estimates should be 
multiplied by a correction factor (CF), which is 
a number close to 1. In this study, the biomass 
estimates were corrected using equation (4) 
from Snowdon (1991).

where CFSD is the correction factor described 
by Snowdon (1991), Yi is the observed data of  
the ith  sample, i

Ŷ is the estimated data of  the ith 
sample, and n is the number of  sample.

III. RESULT AND DISCUSSION

A.   Result
All the regression models were statistically 

highly significant (p < 0.0001) and generally 
fitted the data well. The residuals for AGB 
models were relatively normally distributed 
and did not show any pattern (Appendix 2). 
The regression coefficient and the statistical 
summary for each model are presented in Table 
2. Based on the model summary, Model 3 and 
5, which used DBH, H and ρ, performed better 

in estimating AGB. This was indicated by the 
higher R2 and adjusted R2 and the lower SEE 
and MSE. Between Model 3 and 5, Model 5 
(which uses three single-variables), performed 
better than the combined variable of  Model 3. 
There was no difference in statistical summaries 
between Model 2 and 4 in relation to the type 
of  variable used. Model 1, which is the simplest 
model, gave the lowest performance. However, 
in general, all the models had acceptable 
goodness-of-fit to the data indicated by R2 
which was greater than 0.95.

When using only DBH as a predictive 
variable (Model 1), 97% of  the variation of  the 
AGB (Table 2) was explained. Adding H as a 
second predictor improved the performance of  
the model by increasing R2 and adjusted R2 and 
subsequently reducing SEE and MSE. Since 
the R2 for Model 1 was already high, adding H 
has only slightly increased the R2. For combined 
variable (Model 2), R2 has increased relatively 
by 1.1%, while SEE was reduced relatively 
by 19.8%. Adding ρ to the model as the third 
predictor has slightly improved the performance 
of  the models. As a combined variable (Model 
3 to Model 2), ρ improved the R2 by 0.4% and 
reduced the SEE by 11.2%. As an independent 
variable (Model 5 to Model 4), ρ increased the 
R2 by 0.6% and decreased the SEE by 15.0%.

The model selection was based on the 
comparison parameters explained by Parresol 
(1999) and is summarised in Table 3. Based on 
these parameters, Model 5, which used three 
independent variables, outperformed all other 
models, which is indicated by the highest FI 
value and the lowest Se, CV, I, S (%), and AIC 
values. Adding H to the DBH reduced the Se up 
to ~50 kg, the CV (as a measure of  dispersion 
around the mean) up to ~6% and the S (%) 
(as a measure of  precision) up to ~4% (non-
corrected models). Based on the comparison 
parameters in Table 3, Model 2 performed 
slightly better in estimating AGB in the study 
area, which previously could not be observed 
from the statistical summary of  the models in 
Table 2. Adding the H and ρ together to the 
DBH in the AGB models reduced the Se up to 

*2ln p
C

eSS
CAIC +=
















....................................(3)

1

ˆ
1

n
Yi

i
nCFSD n
Yi

i
n

=

=

=

 
∑ 

 
 
 ∑ 
 
 

....................................(4)
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~104 kg, the CV up to ~12% and the S (%) up 
to ~7% (non-corrected models). In this case, 
Model 5 (which uses three single predictors) 
performed better than Model 3 (which uses a 
compound of  three variables). Adding extra 
variables into the models increased the FI 
values up to 5%.

Log-transformation of  the datasets 
during the model construction resulted in 

the underestimation of  the actual biomass as 
indicated by the negative values of  the bias (Table 
3). The underestimation of  actual biomass was 
also observed using a scatter plot of  predicted 
AGB against observed AGB as presented in 
Appendix 3. Multiplying the predicted biomass 
by a CF was intended to remove the systematic 
bias due to back-transformation. In this study, 
the formula of  Snowdon (1991) was used. 

Table 2. Regression coefficients and statistical summary for each AGB model

Model
Coefficient Model Summary

Symbol Value SE R2 Adjusted R2 SEE MSE

1. a
b

-2.551
2.660

0.208
0.067 0.970 0.969 0.333 0.111

2. a
b

-3.398
0.995

0.182
0.020

0.981 0.980 0.267 0.071

3. a
b

-2.965
0.990

0.154
0.018

0.985 0.984 0.237 0.056

4. a
b
c

-3.580
1.827
1.229

0.256
0.166
0.232

0.981 0.980 0.267 0.071

5. a
b
c
d

-3.126
2.011
0.966
0.641

0.240
0.147
0.206
0.145

0.987 0.986 0.227 0.051

Notes: SE = standard error of  the coefficient, R2 = coefficient of  determination, SEE = standard error of  the 
estimate and MSE = mean square error. All models and coefficients are statistically significant at α = 0.05 (p 
<0.0001, except for coefficient d in Model 5: p = 0.001)

Table 3. A summary of  comparison parameters of  the developed models for AGB estimation

Model
Comparison parameters

CF
FI Se CV I S (%) AIC Bias

1 0.91 337.90 40.59 84.79 25.97 595.88 -19.74 NC
0.91 339.84 40.82 84.79 26.63 596.47 0.00 1.024a

2 0.93 288.09 34.60 67.99 22.21 579.61 -22.32 NC
0.93 287.41 34.52 67.99 22.51 579.37 0.00 1.028a

3 0.93 283.79 34.09 60.35 20.71 578.08 -15.47 NC
0.93 285.99 34.35 60.35 21.07 578.87 0.00 1.019a

4 0.93 288.32 34.63 67.99 22.10 580.64 -23.68 NC
0.93 286.92 34.46 67.99 22.41 580.15 0.00 1.029a

5 0.96 233.52 28.05 57.80 19.32 560.07 -17.42 NC
0.96 232.94 27.98 57.80 19.52 559.82 0.00 1.021a

Notes: FI = Fit Index, Se = Standard error in actual unit, CV = Coefficient of  Variation, I = Furnival’s index, S (%) = 
Average deviation, AIC = Akaike’s Information Criterion, NC = Not Corrected, a = corrected using  formula 
from Snowdon (1991)
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Furthermore, regardless of  use, the CF did 
not necessarily improve the performance of  
the models in total (Table 3), as evaluated from 
the increased values of  Se, CV, S (%), and 
AIC. However, the CF formula from Snowdon 
(1991) was useful in removing the bias of  the 
models.

This study was conducted in peat swamp 
forests that have been actively logged by a 
commercial company. Following the current 
silvicultural system, the company is extracting 
the commercial tree species with a minimum 
DBH of  30 cm (Istomo et al., 2010). Therefore, 
it is important to evaluate the S (%) based on 
the DBH classes. This information is useful in 
selecting the model for the biomass study in 
relation to the forest condition, especially the 
distribution of  the diameters. The developed 
models have generally low S (%) of  AGB (< 
30%; Table 4). The exception was Model 1 with 

a DBH greater than 50 cm (30.5%). All of  the 
equations tended to have a higher S (%) when 
the smaller DBH classes were considered. For 
DBH class less than 10 cm, theS (%) ranged 
from 21.8% to 29.1%, while for DBH class 
10-30 cm, the S (%) ranged from 20.8% to 
28.3%. This S (%) decreased with larger DBH 
classes giving common values of  less than 20%, 
except for Model 1 (30.5% at DBH > 50 cm). 
In general, Model 5 provided the most precise 
estimate of  AGB in the study area, as indicated 
by the smallest values of  S (%) in all DBH 
classes. The visualization of  the S (%) based 
on the DBH classes is presented in Figure 2.

B. Discussion
1.	 Allometric equations

The selection or development of  reliable 
allometric biomass equations is an essential 
step in estimating the AGB of  the forest (Crow, 

Table 4. Mean average deviation (S (%)) per DBH class for each model

Model
Mean S (%)

DBH<= 10 cm 10 cm <DBH<= 30 cm 30 cm<DBH<= 50 cm DBH> 50 cm

1 29.10 28.26 21.15 30.49
2 25.75 22.77 19.18 23.53
3 22.87 22.92 18.31 18.80
4 26.44 22.34 18.82 23.53
5 21.79 20.79 16.60 18.49

Figure 2. The mean average deviation ( S (%)) based on DBH classes for each allometric model



1978; Cunia, 1987; Brown et al., 1989; Chave 
et al., 2001; Houghton et al., 2001; Chave et al., 
2004; Chave et al., 2005). The basic idea of  
developing allometric equation is to estimate 
the difficult-to-measure tree characteristics 
(e.g. biomass) from one that is relatively easy to 
measure such as DBH (Goetz et al., 2010). Chave 
et al. (2004) pointed out that the most important 
source of  error in forest biomass studies is the 
incorrect or inappropriate choice of  allometric 
equation. Species-specific allometric equations, 
which are commonly used in the biomass study 
of  temperate forest (e.g. Ter-Mikaelian and 
Korzukhin, 1997; Jenkins et al., 2003; Zianis et 
al., 2005), are not applicable to tropical forest 
which has high number of  species per ha. In 
this case, the mixed-species allometric equations 
are more suitable (Ketterings et al., 2001; Chave 
et al., 2005). 

Many studies have been conducted to develop 
mixed-species allometric equation for biomass 
estimation in tropical forest (e.g. Brown et al., 
1989; Brown et al., 1995; Brown, 1997; Araujo 
et al., 1999; Nelson et al., 1999; Chambers et al., 
2001; Chave et al., 2001; Ketterings et al., 2001; 
Chave et al., 2005; Nogueira et al., 2008b; Basuki 
et al., 2009; Kenzo et al., 2009a; Kenzo et al., 
2009b). However, few studies on allometric 
biomass equations have been conducted for 
peat swamp forests and the results are usually 
not publicly accessible (Verwer and Meer, 2010; 
Solichin et al., 2011). Therefore, it is expected 
that this study will contribute significantly 
to the improvement of  biomass and carbon 
estimation accuracies in peat swamp forests.

DBH as a variable has been found to have 
a strong correlation with biomass (with R2 

typically more than 95%). Previous studies 
recommended the application of  the allometric 
equation which uses only DBH, although 
largely for practical reason (e.g. Brown, 1997; 
Basuki et al., 2009; Návar, 2009). This is because 
the DBH is more easily measured in the 
forest and collected during the regular forest 
inventory (Segura and Kanninen, 2005). In this 
study, allometric equation with only DBH as a 
predictor (Model 1) had an R2 of  97.0%. The 

S (%) value was 26.6% which is comparable 
with the S (%) of  the DBH-only model in 
mixed-dipterocarp forest in East Kalimantan 
(Basuki et al., 2009). This statistic indicates 
the average size of  error as a percent of  the 
mean and can be used as a precision indicator 
(Parresol, 1999), where the lower the value the 
higher the precision. Although the DBH-only 
model is more practical, the model tends largely 
to underestimate or overestimate the actual 
biomass. For example, Parastemon urophyllum 
and Palaquium obovatum with the same DBH of  
7.6 cm have weights of  35.15 kg and 8.94 kg, 
respectively. Using only DBH as a predictive 
variable, Model 1 estimated AGB for these two 
tree species to be 17.6 kg. As a result, the S  
(%) for P. obovatum was very large (96.8%), and 
almost twice than the  S (%) for P. urophyllum 
(49.9%). This is because the architecture of  the 
tree is not accounted in the model (i.e. the H 
differs being 11.52 m and 7.83 m, respectively). 
For trees with larger DBH, the S (%) is relatively 
lower but the actual residual is large. Therefore, 
adding H as a second predictor in the model is 
important.

Numerous other studies on forest biomass 
(e.g. Crow, 1978; Nelson et al., 1999; Ketterings 
et al., 2001; Chave et al., 2005; Cole and Ewel, 
2006; Fehrmann and Kleinn, 2006; Wang, 
2006) have previously noted that adding H can 
improve the model performance. Adding H to 
DBH in the AGB models increases the R2 by up 
to 1.7% relative to Model 1. Although adding 
H can only marginally increase the R2, the 
SEE was reduced significantly (up to 22%). In 
addition, the Se was reduced as well as the CV 
and the S (%). Using Model 2, the estimated 
biomass values for P. urophyllum and P. obovatum 
were 22.13 kg and 15.07 kg, respectively. The S
(%) was reduced to 68.5% (-28.3%) and 37.0% 
(-12.9%), respectively. 

Model 4, which considers H as an 
independent variable, provided a better 
estimate. The estimated biomass values for P. 
urophyllum and P. obovatum were 14.64 kg and 
23.52 kg, respectively and the S (%) values were 
63.7% and 33.1%, respectively. The advantage 
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of  adding H was more evident for larger trees. 
For example, Ilex macrophylla and Gonystylus 
bancanus have the same DBH (40.0 cm) but 
their H and AGBtree were different, with these 
being 24.14 m and 30.21 m, and 1186.95 kg and 
1779.28 kg, respectively. The estimated AGBtree 
using Model 1 gave 1458.87 kg for both tree 
species and the S (%) values were 22.9% and 
18.0%, respectively. When Model 4 was used to 
estimate the biomass of  these trees, the  S (%)
values for I. macrophylla and G. bancanus became 
2.2% and 10.1%, respectively.

Further improvement can be achieved by 
adding ρ to the model. The ρ is an important tree 
parameter in estimating biomass, in particular 
for larger trees (Baker et al., 2004; Chave et al., 
2005; Nogueira et al., 2008a). This study found 
that allometric equation which uses three 
independent variables (i.e. DBH, H and ρ) gave 
the best performance (Model 5) and supports 
previous studies (e.g. Nelson et al., 1999; Chave 
et al., 2005). Incorporating ρ into the DBH-H 
models increased the R2 by less than 1% but 
reduced the relative SEE by up to ~15%. 
Adding H and ρ together to DBH increased the 
performances of  the model significantly based 
on the comparison parameters. However, for 
some tree species, the ρ was not an important 
parameter. For example, Shorea uliginosa and P. 
urophyllum have the same DBH of  43.70 cm and 
relatively the same H (33.30 m and 33.46 m) 
and also dry weight biomass (2300.50 kg and 
2392.44 kg), but their ρ values were different 
(0.640 g cm-3 and 1.040 g cm-3). In this case, 
the most important factor was the difference 
in canopy structure (branching system). S. 
uliginosa tends to have a heavier canopy with 
more branches and bigger leaves compared to 
P. urophyllum. Thus, although P. urophyllum has 
significantly higher ρ, the dry weight biomass 
values were not largely different. For these 
species, Model 5, which uses three independent 
variables, resulted in lower precision than 
Model 4, which uses two independent variables 
(without ρ). The  S (%) values were 13.9% and 
13.6% (Model 5) and 7.9% and 10.9% (Model 
4). Basuki et al. (2009) found that ρ is not 

statistically significant for Dipterocarpus, Hopea 
and Shorea in East Kalimantan. Nelson et al. 
(1999) also found that ρ is not significant for 
Bellucia species in the central Amazon.

The results of  the model comparison 
indicated that increasing number of  parameters 
or independent variables increases the 
performance of  the model. However, it is 
important to note that including more variables 
in the model increases the regression error 
or uncertainty of  the biomass through error 
propagation (Chave et al., 2004; Chave et al., 
2005). In addition, information on species-
specific ρ for peat swamp forest species is not 
always available in the database of  the World 
Agroforestry Centre (CGIAR, 2008), although 
the average value of  the wood density for the 
genus can be used instead (Krisnawati et al., 2012), 
and H is usually not collected during the forest 
inventory (Chave et al., 2005). An alternative 
way to acquire H information is by constructing 
a stand-specific allometric relationship between 
H with DBH from destructively sampled trees 
and then using the developed equation to 
predict the H for the rest of  the trees being 
studied (Brown et al., 1989; Chave et al., 2005), 
although errors in this relationship need to 
be accounted for. Adding H can improve the 
model’s performance, but H is rarely used in 
practice because of  two reasons: (1) measuring 
H in a forest ecosystem, particularly in dense 
tropical forests is much more difficult and time 
consuming but less accurately estimated than 
DBH (Gower et al., 1999); and (2) adding H 
into the model increases the regression error in 
the biomass estimate (Chave et al., 2005). 

2.	 The applicability of  the developed site-
specific allometric equations

 The developed models are considered as the 
site-specific allometric equations for the study 
area as the sampled trees that were used to 
construct the model were harvested in situ. The 
models should be used in the biomass studies 
of  peat swamp forests within their DBH range 
(5.2-62.7 cm). It is important to consider the 
DBH range in applying allometric equations 
as the error tends to increase with increases in 
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DBH. Applying allometric equations outside 
the DBH range will result in bigger errors, 
especially for the larger trees.

3.	 The limitations of  the developed site-
specific allometric equations

There are several limitations in developing 
site-specific allometric models for AGB in 
this study. Firstly, during the oven-dry weight 
analysis, the sub-subsampled tree components 
were used instead of  the subsampled ones. Pre-
analysis was carried out to find the moisture 
differences between field fresh weight and 
laboratory fresh weight using 44 randomly 
selected subsampled tree components (stems, 
branches, twigs, and leaves). The average 
percent differences were 2.8%, 4.0%, 4.9%, 
and 5.9% for stems, branches, twigs and 
leaves, respectively. The correction for each 
component was conducted by adding the lower 
value of  confidence interval in paired samples 
t-test as suggested by Statistical Consulting Unit 
at the Australian National University, with these 
being 7.60 g, 6.86 g, 7.02 g, and 6.58 g for stems, 
branches, twigs, and leaves, respectively. This 
correction may introduce a systematic bias in 
the predicted biomass. 

Secondly, this study used a limited number of  
species for constructing the allometric models 
(11 species in total with nine dominant species) 
within a relatively narrow DBH range (i.e. 
5.2-62.7 cm). Based on the plot measurement 
during the field campaign, approximately 
53 tree species have been identified (mostly 
by their local name) and four species were 
unknown. Considering the number of  sampled 
tree species across the DBH range, the models 
may not well represent the peat swamp forest at 
large (Chave et al., 2005). Third, the tree species 
were recorded by their local names and because 
there are different local names for the same 
species and different species with the same 
local name, identifying the correct scientific 
name in the literature or database can lead to 
misidentification. Furthermore, this can lead 
to an incorrect use of  ρ estimates from the 
database. 

IV. CONCLUSION

In this study five site-specific allometric 
equations have been developed based on 
destructively sampled trees. Model 5, which used 
DBH, H and ρ as predictive variables, has the 
best performance in estimating the AGB of  the 
study area. As long as reliable data are available 
for those variables, the application of  Model 5 
is recommended in estimating the AGB of  peat 
swamp forests. However, when reliable data 
on H and ρ are unavailable, the simplest model 
that uses only DBH as a predictor (Model 1) 
can be applied. The accuracy and applicability 
of  the site-specific allometric equations could 
be improved further by adding more sampled 
trees from different tree species and/or with a 
wider DBH range. Considering the importance 
of  wood density in AGB estimation and the 
lack of  this information for peat swamp forest 
tree species, research should be dedicated to 
analysing the wood density of  the dominant 
tree species comprising the majority of  the 
AGB density in the study area. In addition, it is 
important to test the models at other sites (peat 
swamp forest at different locations). Combining 
the dataset from a wide-range of  geographical 
area may improve the generic applicability of  
the models.
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APPENDIX 1. Sampled trees destructively collected to develop site-specific allometric equations 
for AGB estimation in tropical peat swamp forests

ID
Tree species DBH H

Local name Scientific name (cm) (m)

1 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 9.6 10.3
2 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 15.1 12.4
3 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 21.6 12.2
4 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 31.5 23.5
5 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 42.6 32.1
6 Terentang Campnosperma coriaceum (Jack.) Hallier f. ex v. Steenis 52.5 34.3
7 Kelat Carallia brachiata (Lour.) Merr. 8.3 10.0
8 Jambu-jambu Eugenia sp.L. 7.8 10.3
9 Jambu-jambu Eugenia sp.L. 15.5 13.8

10 Jambu-jambu Eugenia sp.L. 22.3 19.8
11 Jambu-jambu Eugenia sp.L. 33.1 17.9
12 Manggis-manggis Garcinia celebica (Burm.) L. 6.0 6.9
13 Manggis-manggis Garcinia celebica (Burm.) L. 18.5 17.1
14 Manggis-manggis Garcinia celebica (Burm.) L. 25.1 18.7
15 Manggis-manggis Garcinia celebica (Burm.) L. 31.2 21.5
16 Ramin Gonystylus bancanus (Miq.) Kurz. 5.2 8.1
17 Ramin Gonystylus bancanus (Miq.) Kurz. 11.8 15.5
18 Ramin Gonystylus bancanus (Miq.) Kurz. 24.8 22.4
19 Ramin Gonystylus bancanus (Miq.) Kurz. 38.3 30.7
20 Ramin Gonystylus bancanus (Miq.) Kurz. 40.0 30.2
21 Ramin Gonystylus bancanus (Miq.) Kurz. 62.7 39.4
22 Darah-darah Horsfieldia glabra (Blume) Warb. 7.1 9.3
23 Darah-darah Horsfieldia glabra (Blume) Warb. 8.5 7.5
24 Darah-darah Horsfieldia glabra (Blume) Warb. 13.6 13.8
25 Darah-darah Horsfieldia glabra (Blume) Warb. 23.6 22.5
26 Darah-darah Horsfieldia glabra (Blume) Warb. 33.0 23.9
27 Pasir-pasir Ilex macrophylla Hook. F. 6.8 8.7
28 Pasir-pasir Ilex macrophylla Hook. F. 10.6 12.5
29 Pasir-pasir Ilex macrophylla Hook. F. 22.0 16.6
30 Pasir-pasir Ilex macrophylla Hook. F. 36.5 24.5
31 Pasir-pasir Ilex macrophylla Hook. F. 40.0 24.1
32 Pasir-pasir Ilex macrophylla Hook. F. 54.4 27.9
33 Balam Palaquium obovatum (Griffith) Enql. 7.6 7.8
34 Balam Palaquium obovatum (Griffith) Enql. 17.0 17.2
35 Balam Palaquium obovatum (Griffith) Enql. 28.5 24.8
36 Balam Palaquium obovatum (Griffith) Enql. 30.3 23.2
37 Balam Palaquium obovatum (Griffith) Enql. 41.0 29.1
38 Balam Palaquium obovatum (Griffith) Enql. 51.5 28.1
39 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 7.6 11.5
40 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 15.8 20.0
41 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 23.1 26.4
42 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 32.7 28.8
43 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 43.7 33.5
44 Milas Parastemon urophyllum (Wallich. ex A. DC) A.DC 54.5 33.2
45 Meranti bunga Shorea teysmanniana Dyer ex Brandis 9.0 9.8
46 Meranti batu Shorea uliginosa Foxw. 8.5 6.4
47 Meranti batu Shorea uliginosa Foxw. 12.5 12.8
48 Meranti batu Shorea uliginosa Foxw. 22.7 25.0
49 Meranti batu Shorea uliginosa Foxw. 31.0 28.8
50 Meranti batu Shorea uliginosa Foxw. 43.7 33.3
51 Meranti batu Shorea uliginosa Foxw. 50.7 33.3
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APPENDIX 2. Normal P-P Plot of  regression standardized residual and scatterplot of  regres-
sion standardized predicted value against regression standardized residual for each 
model: (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, and (e) Model 5

(a)

(b)

(c)

(d)

(e)
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APPENDIX 3. Scatterplots of  predicted AGB against observed AGB for each model without cor-
rection (left hand side) and with correction using Snowdon’s formula (right hand 
side): (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, and (e) Model 5.
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